Static response of functionally graded multilayered two-dimensional quasicrystal plates with mixed boundary conditions

Author(s):  
Xin Feng ◽  
Liangliang Zhang ◽  
Yuxuan Wang ◽  
Jinming Zhang ◽  
Han Zhang ◽  
...  
1957 ◽  
Vol 24 (1) ◽  
pp. 122-124
Author(s):  
Gunadhar Paria

Abstract The problem of finding the stress distribution in a two-dimensional elastic body with parabolic boundary, subject to mixed boundary conditions, has been reduced to the solution of the nonhomogeneous Hilbert problem following the method of complex variable. The result has been compared with that for a straight boundary.


Author(s):  
Thomas B. Gradinger ◽  
T. Laneryd

Natural-convection cooling with oil or other fluids of high Prandtl number plays an important role in many technical applications such as transformers or other electric equipment. For design and optimization, one-dimensional (1D) flow models are of great value. A standard configuration in such models is flow between vertical parallel plates. Accurate modeling of heat transfer, buoyancy, and pressure drop for this configuration is therefore of high importance but gets challenging as the influence of buoyancy rises. For increasing ratio of Grashof to Reynolds number, the accuracy of one-dimensional models based on the locally forced-flow assumption drops. In the present work, buoyancy corrections for use in one-dimensional models are developed and verified. Based on two-dimensional (2D) simulations of buoyant flow using finite-element solver COMSOL Multiphysics, corrections are derived for the local Nusselt number, the local friction coefficient, and a parameter relating velocity-weighted and volumetric mean temperature. The corrections are expressed in terms of the ratio of local Grashof to Reynolds number and a normalized distance from the channel inlet, both readily available in a one-dimensional model. The corrections universally apply to constant wall temperature, constant wall heat flux, and mixed boundary conditions. The developed correlations are tested against two-dimensional simulations for a case of mixed boundary conditions and are found to yield high accuracy in temperature, wall heat flux, and wall shear stress. An application example of a natural-convection loop with two finned heat exchangers shows the influence on mass-flow rate and top-to-bottom temperature difference.


2007 ◽  
Vol 15 (3) ◽  
pp. 157-172 ◽  
Author(s):  
Jonas Koko

A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.


1948 ◽  
Vol 1 (2) ◽  
pp. 135
Author(s):  
WH Wittrick ◽  
W Howard

Relaxation methods have been used to determine the stress distributions in both a rectangular and a highly tapered plate under tension when the load is applied through absolutely rigid clamps. Both problems require the treatment of boundary conditions involving the values of both stresses and displacements. The solutions were obtained in terms of displacements and the stresses were subsequently determined from them.


1991 ◽  
Vol 113 (2) ◽  
pp. 182-186 ◽  
Author(s):  
K. M. Liew ◽  
K. Y. Lam

A computationally efficient and very accurate numerical method is proposed for vibration analysis of regular polygonal plates with any combinations of clamped, simply-supported and free boundary conditions. The method involves the use of two-dimensional orthogonal polynomials generated by the Gram-Schmidt recurrence procedure. For the cases of simply supported and fully clamped hexagonal and octagonal plates, the results obtained agreed very well with those existing in the literature. The frequencies and mode shapes for several hexagonal and octagonal plates subjected to mixed boundary conditions are also presented.


Sign in / Sign up

Export Citation Format

Share Document