Novel artificial bee colony based feature selection method for filtering redundant information

2017 ◽  
Vol 48 (4) ◽  
pp. 868-885 ◽  
Author(s):  
Youwei Wang ◽  
Lizhou Feng ◽  
Jianming Zhu
2020 ◽  
Author(s):  
Esra Sarac Essiz ◽  
Murat Oturakci

Abstract As a nature-inspired algorithm, artificial bee colony (ABC) is an optimization algorithm that is inspired by the search behaviour of honey bees. The main aim of this study is to examine the effects of the ABC-based feature selection algorithm on classification performance for cyberbullying, which has become a significant worldwide social issue in recent years. With this purpose, the classification performance of the proposed ABC-based feature selection method is compared with three different traditional methods such as information gain, ReliefF and chi square. Experimental results present that ABC-based feature selection method outperforms than three traditional methods for the detection of cyberbullying. The Macro averaged F_measure of the data set is increased from 0.659 to 0.8 using proposed ABC-based feature selection method.


2017 ◽  
Vol 33 (4) ◽  
pp. 2059-2073 ◽  
Author(s):  
Youwei Wang ◽  
Lizhou Feng ◽  
Yang Li

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Lijun Wang ◽  
Yu Lei ◽  
Ying Zeng ◽  
Li Tong ◽  
Bin Yan

Brain decoding with functional magnetic resonance imaging (fMRI) requires analysis of complex, multivariate data. Multivoxel pattern analysis (MVPA) has been widely used in recent years. MVPA treats the activation of multiple voxels from fMRI data as a pattern and decodes brain states using pattern classification methods. Feature selection is a critical procedure of MVPA because it decides which features will be included in the classification analysis of fMRI data, thereby improving the performance of the classifier. Features can be selected by limiting the analysis to specific anatomical regions or by computing univariate (voxel-wise) or multivariate statistics. However, these methods either discard some informative features or select features with redundant information. This paper introduces the principal feature analysis as a novel multivariate feature selection method for fMRI data processing. This multivariate approach aims to remove features with redundant information, thereby selecting fewer features, while retaining the most information.


2020 ◽  
Author(s):  
Mumine Kaya Keles ◽  
Umit Kilic ◽  
Abdullah Emre Keles

Abstract Datasets have relevant and irrelevant features whose evaluations are fundamental for classification or clustering processes. The effects of these relevant features make classification accuracy more accurate and stable. At this point, optimization methods are used for feature selection process. This process is a feature reduction process finding the most relevant feature subset without decrement of the accuracy rate obtained by original feature sets. Varied nature inspiration-based optimization algorithms have been proposed as feature selector. The density of data in construction projects and the inability of extracting these data cause various losses in field studies. In this respect, the behaviors of leaders are important in the selection and efficient use of these data. The objective of this study is implementing Artificial Bee Colony (ABC) algorithm as a feature selection method to predict the leadership perception of the construction employees. When Random Forest, Sequential Minimal Optimization and K-Nearest Neighborhood (KNN) are used as classifier, 84.1584% as highest accuracy result and 0.805 as highest F-Measure result were obtained by using KNN and Random Forest classifier with proposed ABC Algorithm as feature selector. The results show that a nature inspiration-based optimization algorithm like ABC algorithm as feature selector is satisfactory in prediction of the Construction Employee’s Leadership Perception.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Serter Uzer ◽  
Nihat Yilmaz ◽  
Onur Inan

This paper offers a hybrid approach that uses the artificial bee colony (ABC) algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications.


2009 ◽  
Vol 29 (10) ◽  
pp. 2812-2815
Author(s):  
Yang-zhu LU ◽  
Xin-you ZHANG ◽  
Yu QI

Sign in / Sign up

Export Citation Format

Share Document