feature selector
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 31)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 5 (3 (Under Construction)) ◽  
pp. 334-343
Author(s):  
Türker TUNCER ◽  
Emrah AYDEMİR ◽  
Fatih ÖZYURT ◽  
Sengul DOGAN ◽  
Samir Brahim BELHAOUARI ◽  
...  

2021 ◽  
Author(s):  
Isaac Shiri ◽  
Yazdan Salimi ◽  
Masoumeh Pakbin ◽  
Ghasem Hajianfar ◽  
Atlas Haddadi Avval ◽  
...  

AbstractObjectiveIn this large multi-institutional study, we aimed to analyze the prognostic power of computed tomography (CT)-based radiomics models in COVID-19 patients.MethodsCT images of 14,339 COVID-19 patients with overall survival outcome were collected from 19 medical centers. Whole lung segmentations were performed automatically using a previously validated deep learning-based model, and regions of interest were further evaluated and modified by a human observer. All images were resampled to an isotropic voxel size, intensities were discretized into 64-binning size, and 105 radiomics features, including shape, intensity, and texture features were extracted from the lung mask. Radiomics features were normalized using Z-score normalization. High-correlated features using Pearson (R2>0.99) were eliminated. We applied the Synthetic Minority Oversampling Technique (SMOT) algorithm in only the training set for different models to overcome unbalance classes. We used 4 feature selection algorithms, namely Analysis of Variance (ANOVA), Kruskal- Wallis (KW), Recursive Feature Elimination (RFE), and Relief. For the classification task, we used seven classifiers, including Logistic Regression (LR), Least Absolute Shrinkage and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost (AB), Naïve Bayes (NB), and Multilayer Perceptron (MLP). The models were built and evaluated using training and testing sets, respectively. Specifically, we evaluated the models using 10 different splitting and cross-validation strategies, including different types of test datasets (e.g. non-harmonized vs. ComBat-harmonized datasets). The sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) were reported for models evaluation.ResultsIn the test dataset (4301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83±0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + RF classifier. In RT-PCR-only positive test sets (3644), similar results were achieved, and there was no statistically significant difference. In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in highest performance of AUC, reaching 0.83±0.01 (CI95%: 0.81-0.85), with sensitivity and specificity of 0.77 and 0.74, respectively. At the same time, ComBat harmonization did not depict statistically significant improvement relevant to non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and LR classifier resulted in the highest performance of AUC (0.80±0.084) with sensitivity and specificity of 0.77 ± 0.11 and 0.76 ± 0.075, respectively.ConclusionLung CT radiomics features can be used towards robust prognostic modeling of COVID-19 in large heterogeneous datasets gathered from multiple centers. As such, CT radiomics-based model has significant potential for use in prospective clinical settings towards improved management of COVID-19 patients.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1962
Author(s):  
Mehmet Ali Kobat ◽  
Tarik Kivrak ◽  
Prabal Datta Barua ◽  
Turker Tuncer ◽  
Sengul Dogan ◽  
...  

COVID-19 and heart failure (HF) are common disorders and although they share some similar symptoms, they require different treatments. Accurate diagnosis of these disorders is crucial for disease management, including patient isolation to curb infection spread of COVID-19. In this work, we aim to develop a computer-aided diagnostic system that can accurately differentiate these three classes (normal, COVID-19 and HF) using cough sounds. A novel handcrafted model was used to classify COVID-19 vs. healthy (Case 1), HF vs. healthy (Case 2) and COVID-19 vs. HF vs. healthy (Case 3) automatically using deoxyribonucleic acid (DNA) patterns. The model was developed using the cough sounds collected from 241 COVID-19 patients, 244 HF patients, and 247 healthy subjects using a hand phone. To the best our knowledge, this is the first work to automatically classify healthy subjects, HF and COVID-19 patients using cough sounds signals. Our proposed model comprises a graph-based local feature generator (DNA pattern), an iterative maximum relevance minimum redundancy (ImRMR) iterative feature selector, with classification using the k-nearest neighbor classifier. Our proposed model attained an accuracy of 100.0%, 99.38%, and 99.49% for Case 1, Case 2, and Case 3, respectively. The developed system is completely automated and economical, and can be utilized to accurately detect COVID-19 versus HF using cough sounds.


This paper deals with a simple but efficient method for detection of deadly malignant melanoma with optimized hand-crafted feature sets selected by three alternative metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Simulated Annealing (SA). Total 1898 number of features relating to lesion shapes, colors and textures are extracted from each of the 170 non-dermoscopy camera images of the popular MED-NODE dataset. This large feature set is then optimized and the number of features is reduced to up-to the range of single digit using metaheuristic algorithms as feature selector. Two well-known supervised classifiers, i.e. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are used to classify malignant and benign lesions. The best classification accuracy result found by this method is 87.69% with only 7 features selected by PSO using ANN classifier which is far better than the results found in the literature so far.


Author(s):  
Mohamed H Abdelhafiz ◽  
Mohammed I Awad ◽  
Ahmed Sadek ◽  
Farid Tolbah

This paper describes the development of a human gait activity recognition system. A multi-sensor recognition system, which has been developed for this purpose, was reduced to a single sensor-based recognition system. A sensor election method was devised based on the maximum relevance minimum redundancy feature selector to determine the sensor’s optimum position regarding activity recognition. The election method proved that the thigh has the highest contribution to recognize walking, stairs and ramp ascending, and descending activities. A recognition algorithm (which depends mainly on features that are classified by random forest, and selected by a combined feature selector using the maximum relevance minimum redundancy and genetic algorithm) has been modified to compensate the degradation that occurs in the prediction accuracy due to the reduction in the number of sensors. The first modification was implementing a double layer classifier in order to discriminate between the interfered activities. The second modification was adding physical features to the features dictionary used. These modifications succeeded to improve the prediction accuracy to allow a single sensor recognition system to behave in the same manner as a multi-sensor activity recognition system.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4070
Author(s):  
Md Junayed Hasan ◽  
Muhammad Sohaib ◽  
Jong-Myon Kim

In this paper, an explainable AI-based fault diagnosis model for bearings is proposed with five stages, i.e., (1) a data preprocessing method based on the Stockwell Transformation Coefficient (STC) is proposed to analyze the vibration signals for variable speed and load conditions, (2) a statistical feature extraction method is introduced to capture the significance from the invariant pattern of the analyzed data by STC, (3) an explainable feature selection process is proposed by introducing a wrapper-based feature selector—Boruta, (4) a feature filtration method is considered on the top of the feature selector to avoid the multicollinearity problem, and finally, (5) an additive Shapley explanation followed by k-NN is proposed to diagnose and to explain the individual decision of the k-NN classifier for debugging the performance of the diagnosis model. Thus, the idea of explainability is introduced for the first time in the field of bearing fault diagnosis in two steps: (a) incorporating explainability to the feature selection process, and (b) interpretation of the classifier performance with respect to the selected features. The effectiveness of the proposed model is demonstrated on two different datasets obtained from separate bearing testbeds. Lastly, an assessment of several state-of-the-art fault diagnosis algorithms in rotating machinery is included.


Author(s):  
Emil Sauter ◽  
Erkut Sarikaya ◽  
Marius Winter ◽  
Konrad Wegener

AbstractThe improvement of industrial grinding processes is driven by the objective to reduce process time and costs while maintaining required workpiece quality characteristics. One of several limiting factors is grinding burn. Usually applied techniques for workpiece burn are conducted often only for selected parts and can be time consuming. This study presents a new approach for grinding burn detection realized for each ground part under near-production conditions. Based on the in-process measurement of acoustic emission, spindle electric current, and power signals, time-frequency transforms are conducted to derive almost 900 statistical features as an input for machine learning algorithms. Using genetic programming, an optimized combination between feature selector and classifier is determined to detect grinding burn. The application of the approach results in a high classification accuracy of about 99% for the binary problem and more than 98% for the multi-classdetection case, respectively.


Sign in / Sign up

Export Citation Format

Share Document