scholarly journals A recurrent neural network for urban long-term traffic flow forecasting

2020 ◽  
Vol 50 (10) ◽  
pp. 3252-3265 ◽  
Author(s):  
Asma Belhadi ◽  
Youcef Djenouri ◽  
Djamel Djenouri ◽  
Jerry Chun-Wei Lin

Abstract This paper investigates the use of recurrent neural network to predict urban long-term traffic flows. A representation of the long-term flows with related weather and contextual information is first introduced. A recurrent neural network approach, named RNN-LF, is then proposed to predict the long-term of flows from multiple data sources. Moreover, a parallel implementation on GPU of the proposed solution is developed (GRNN-LF), which allows to boost the performance of RNN-LF. Several experiments have been carried out on real traffic flow including a small city (Odense, Denmark) and a very big city (Beijing). The results reveal that the sequential version (RNN-LF) is capable of dealing effectively with traffic of small cities. They also confirm the scalability of GRNN-LF compared to the most competitive GPU-based software tools when dealing with big traffic flow such as Beijing urban data.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Jianlei Zhang ◽  
Yukun Zeng ◽  
Binil Starly

AbstractData-driven approaches for machine tool wear diagnosis and prognosis are gaining attention in the past few years. The goal of our study is to advance the adaptability, flexibility, prediction performance, and prediction horizon for online monitoring and prediction. This paper proposes the use of a recent deep learning method, based on Gated Recurrent Neural Network architecture, including Long Short Term Memory (LSTM), which try to captures long-term dependencies than regular Recurrent Neural Network method for modeling sequential data, and also the mechanism to realize the online diagnosis and prognosis and remaining useful life (RUL) prediction with indirect measurement collected during the manufacturing process. Existing models are usually tool-specific and can hardly be generalized to other scenarios such as for different tools or operating environments. Different from current methods, the proposed model requires no prior knowledge about the system and thus can be generalized to different scenarios and machine tools. With inherent memory units, the proposed model can also capture long-term dependencies while learning from sequential data such as those collected by condition monitoring sensors, which means it can be accommodated to machine tools with varying life and increase the prediction performance. To prove the validity of the proposed approach, we conducted multiple experiments on a milling machine cutting tool and applied the model for online diagnosis and RUL prediction. Without loss of generality, we incorporate a system transition function and system observation function into the neural net and trained it with signal data from a minimally intrusive vibration sensor. The experiment results showed that our LSTM-based model achieved the best overall accuracy among other methods, with a minimal Mean Square Error (MSE) for tool wear prediction and RUL prediction respectively.


2008 ◽  
Vol 20 (3) ◽  
pp. 844-872 ◽  
Author(s):  
Youshen Xia ◽  
Mohamed S. Kamel

The constrained L1 estimation is an attractive alternative to both the unconstrained L1 estimation and the least square estimation. In this letter, we propose a cooperative recurrent neural network (CRNN) for solving L1 estimation problems with general linear constraints. The proposed CRNN model combines four individual neural network models automatically and is suitable for parallel implementation. As a special case, the proposed CRNN includes two existing neural networks for solving unconstrained and constrained L1 estimation problems, respectively. Unlike existing neural networks, with penalty parameters, for solving the constrained L1 estimation problem, the proposed CRNN is guaranteed to converge globally to the exact optimal solution without any additional condition. Compared with conventional numerical algorithms, the proposed CRNN has a low computational complexity and can deal with the L1 estimation problem with degeneracy. Several applied examples show that the proposed CRNN can obtain more accurate estimates than several existing algorithms.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 25 ◽  
Author(s):  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
Muhammad Nazmi ◽  
Asim A Elsheikh

Forecasting time-series data are imperative especially when planning is required through modelling using uncertain knowledge of future events. Recurrent neural network models have been applied in the industry and outperform standard artificial neural networks in forecasting, but fail in long term time-series forecasting due to the vanishing gradient problem. This study offers a robust solution that can be implemented for long-term forecasting using a special architecture of recurrent neural network known as Long Short Term Memory (LSTM) model to overcome the vanishing gradient problem. LSTM is specially designed to avoid the long-term dependency problem as their default behavior. Empirical analysis is performed using quantitative forecasting metrics and comparative model performance on the forecasted outputs. An evaluation analysis is performed to validate that the LSTM model provides better forecasted outputs on Standard & Poor’s 500 Index (S&P 500) in terms of error metrics as compared to other forecasting models.  


Sign in / Sign up

Export Citation Format

Share Document