scholarly journals A machine-learning-based method for automatizing lattice-Boltzmann simulations of respiratory flows

Author(s):  
Mario Rüttgers ◽  
Moritz Waldmann ◽  
Wolfgang Schröder ◽  
Andreas Lintermann

AbstractMany simulation workflows require to prepare the data for the simulation manually. This is time consuming and leads to a massive bottleneck when a large number of numerical simulations is requested. This bottleneck can be overcome by an automated data processing pipeline. Such a novel pipeline is developed for a medical use case from rhinology, where computer tomography recordings are used as input and flow simulation data define the results. Convolutional neural networks are applied to segment the upper airways and to detect and prepare the in- and outflow regions for accurate boundary condition prescription in the simulation. The automated process is tested on three cases which have not been used to train the networks. The accuracy of the pipeline is evaluated by comparing the network-generated output surfaces to those obtained from a semi-automated procedure performed by a medical professional. Except for minor deviations at interfaces between ethmoidal sinuses, the network-generated surface is sufficiently accurate. To further analyze the accuracy of the automated pipeline, flow simulations are conducted with a thermal lattice-Boltzmann method for both cases on a high-performace computing system. The comparison of the results of the respiratory flow simulations yield averaged errors of less than 1% for the pressure loss between the in- and outlets, and for the outlet temperature. Thus, the pipeline is shown to work accurately and the geometrical deviations at the ethmoidal sinuses to be negligible.

Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 338
Author(s):  
Susumu Osaki ◽  
Kosuke Hayashi ◽  
Hidehito Kimura ◽  
Takeshi Seta ◽  
Takashi Sasayama ◽  
...  

Lattice Boltzmann simulations and a velocity measurement of flows in a cerebral aneurysm reconstructed from MRA (magnetic resonance angiography) images of an actual aneurysm were carried out and the numerical results obtained using the bounce-back schemes were compared with the experimental data to discuss the effects of the numerical treatment of the no-slip boundary condition of the complex boundary shape of the aneurysm on the predictions. The conclusions obtained are as follows: (1) measured data of the velocity in the aneurysm model useful for validation of numerical methods were obtained, (2) the numerical stability of the quadratic interpolated bounce-back scheme (QBB) in the flow simulation of the cerebral aneurysm is lower than those of the half-way bounce-back (HBB) and the linearly interpolated bounce-back (LBB) schemes, (3) the flow structures predicted using HBB and LBB are comparable and agree well with the experimental data, and (4) the fluctuations of the wall shear stress (WSS), i.e., the oscillatory shear index (OSI), can be well predicted even with the jaggy wall representation of HBB, whereas the magnitude of WSS predicted with HBB tends to be smaller than that with LBB.


2009 ◽  
Vol 228 (4) ◽  
pp. 1139-1156 ◽  
Author(s):  
G. Thömmes ◽  
J. Becker ◽  
M. Junk ◽  
A.K. Vaikuntam ◽  
D. Kehrwald ◽  
...  

2021 ◽  
Vol 321 ◽  
pp. 01014
Author(s):  
Makoto Sugimoto ◽  
Tatsuya Miyazaki ◽  
Zelin Li ◽  
Masayuki Kaneda ◽  
Kazuhiko Suga

Stator coils of automobiles in operation generate heat and are cooled by a coolant poured from above. Since the behavior characteristic of the coolant poured on the coils is not clarified yet due to its complexity, the three-dimensional two-phase flow simulation is conducted. In this study, as a steppingstone to the simulation of the liquid falling on the actual coils, the coils are modelled with horizontal rectangular pillar arrays whose governing parameters can be easily changed. The two-phase flows are simulated using the lattice Boltzmann method and the phase-field model, and the effects of the governing parameters, such as the physical properties of the cooling liquid, the wettability, and the gap between the pillars, on the wetting area are investigated. The results show that the oil tends to spread across the pillars because of its high viscosity. Moreover, the liquid spreads quickly when the contact angle is small. In the case that the pillars are stacked, the wetting area of the inner pillars is larger than that of the exposed pillars.


2015 ◽  
Vol 8 (4) ◽  
pp. 405-414 ◽  
Author(s):  
M. Amirul Islam Khan ◽  
Nicolas Delbosc ◽  
Catherine J. Noakes ◽  
Jonathan Summers

2016 ◽  
pp. 38-1-38-30 ◽  
Author(s):  
G Falcucci ◽  
S Melchionna ◽  
S Ubertini ◽  
Sauro Succi

Sign in / Sign up

Export Citation Format

Share Document