scholarly journals Variation in trophic niches of oribatid mites in temperate forest ecosystems as indicated by neutral lipid fatty acid patterns

2020 ◽  
Vol 81 (1) ◽  
pp. 103-115 ◽  
Author(s):  
Mark Maraun ◽  
Dana Augustin ◽  
Melanie M. Pollierer ◽  
Stefan Scheu
2005 ◽  
Vol 71 (5) ◽  
pp. 2592-2599 ◽  
Author(s):  
Pål Axel Olsson ◽  
Ingrid M. van Aarle ◽  
Mayra E. Gavito ◽  
Per Bengtson ◽  
Göran Bengtsson

ABSTRACT The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r 2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.


1985 ◽  
Vol 63 (12) ◽  
pp. 2775-2777 ◽  
Author(s):  
M. D. Wiegand ◽  
D. R. Idler

The ovarian neutral lipid fatty acid composition was determined for 22 landlocked Atlantic salmon with gonadosomatic index ranging from 0.75 to 13.6. In fish with gonadosomatic index over 1.3, the proportions of 16:1 and 18:1 increased, while those of 20:5 (n – 3) and 22:6 (n – 3) decreased with increasing gonadosomatic index. The proportion of the other major neutral lipid fatty acid, 16:0, did not vary with gonadosomatic index. Analysis of selected samples did not reveal any relationship between gonadosomatic index and the proportions of the major phospholipid fatty acids, 22:6 (n – 3), 16:0, and 18:1.


2017 ◽  
Vol 7 (22) ◽  
pp. 9624-9638 ◽  
Author(s):  
Ting-Wen Chen ◽  
Philipp Sandmann ◽  
Ina Schaefer ◽  
Stefan Scheu

2012 ◽  
Vol 21 (1) ◽  
pp. 12-27 ◽  
Author(s):  
Mauritz Vestberg ◽  
Ansa Palojärvi ◽  
Timo Pitkänen ◽  
Saara Kaipainen ◽  
Elina Puolakka ◽  
...  

The impact of host mycotrophy on arbuscular mycorrhizal fungal (AMF) markers was studied in a temperate agricultural soil cropped with mycorrhizal barley, flax, reed canary-grass, timothy, caraway and quinoa and non-mycorrhizal buckwheat, dyer's woad, nettle and false flax. The percentage of AMF root colonization, the numbers of infective propagules by the Most Probable Number (MPN) method, and the amounts of signature Phospholipid Fatty Acid (PLFA) 16:1ω5 and Neutral Lipid Fatty Acid (NLFA) 16:1ω5 were measured as AMF markers.  Crop had a significant impact on MPN levels of AMF, on NLFA 16:1ω5 levels in bulk and rhizosphere soil and on PLFA 16:1ω5 levels in rhizosphere soil. Reed canary-grass induced the highest levels of AMF markers. Mycorrhizal markers were at low levels in all non-mycorrhizal crops. NLFA 16:1ω5 and the ratio of NLFA to PLFA 16:1ω5 from bulk soil are adequate methods as indicators of AMF biomass in soil.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Christopher Ngosong ◽  
Elke Gabriel ◽  
Liliane Ruess

Biomass estimation of arbuscular mycorrhiza (AM) fungi, widespread plant root symbionts, commonly employs lipid biomarkers, predominantly the fatty acid 16:1ω5. We briefly reviewed the application of this signature fatty acid, followed by a case study comparing biochemical markers with microscopic techniques in an arable soil following a change to AM non-host plants after 27 years of continuous host crops, that is, two successive cropping seasons with wheat followed by amaranth. After switching to the non-host amaranth, spore biomass estimated by the neutral lipid fatty acid (NLFA) 16:1ω5 decreased to almost nil, whereas microscopic spore counts decreased by about 50% only. In contrast, AM hyphal biomass assessed by the phospholipid (PLFA) 16:1ω5 was greater under amaranth than wheat. The application of PLFA 16:1ω5 as biomarker was hampered by background level derived from bacteria, and further enhanced by its incorporation from degrading spores used as microbial resource. Meanwhile, biochemical and morphological assessments showed negative correlation for spores and none for hyphal biomass. In conclusion, the NLFA 16:1ω5 appears to be a feasible indicator for AM fungi of the Glomales group in the complex field soils, whereas the use of PLFA 16:1ω5 for hyphae is unsuitable and should be restricted to controlled laboratory studies.


Sign in / Sign up

Export Citation Format

Share Document