lipid fatty acid
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 24)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Federica Pirri ◽  
Lino Ometto ◽  
Silvia Fuselli ◽  
Flávia A.N. Fernandes ◽  
Lorena Ancona ◽  
...  

The eco-evolutionary history of penguins is profoundly influenced by their shift from temperate to cold environments. Breeding only in Antarctica during the winter, the Emperor penguin appears as an extreme outcome of this process, with unique features related to insulation, heat production and energy management. However, whether this species actually diverged from a less cold-adapted ancestor, thus more similar in ecology to its sister species, the King penguin, is still an open question. As the Antarctic niche shift likely resulted in vast changes in selective pressure experienced by the Emperor penguin, the identification and relative quantification of the genomic signatures of selection, unique to each of these sister species, could answer this question. Applying a suite of phylogeny-based methods on 7,651 orthologous gene alignments of seven penguins and 13 other birds, we identified a set of candidate genes showing significantly different selection regimes either in the Emperor or in the King penguin lineage. Our comparative approach unveils a more pervasive selection shift in the Emperor penguin, supporting the hypothesis that its extreme cold adaptation is a derived state from a more King penguin-like ecology. Among the candidate genes under selection in the Emperor penguin, four genes (TRPM8, LEPR, CRB1, and SFI1) were identified before in other cold adapted vertebrates, while, on the other hand, 161 genes can be assigned to functional pathways relevant to cold adaptation (e.g., cardiovascular system, lipid, fatty acid and glucose metabolism, insulation, etc.). Our results show that extreme cold adaptation in the Emperor penguin largely involved unique genetic options which, however, affect metabolic and physiological traits common to other cold-adapted homeotherms.


2021 ◽  
Author(s):  
EG Kholina ◽  
ME Bozdaganyan ◽  
MG Strakhovskaya ◽  
IB Kovalenko

Plasma membrane is one of the major targets for cationic antiseptics (CA). The study was aimed to assess molecular effects of CAs of different chemical classes on cardiolipin-containing regions of bacterial plasma membranes. The study was carried out using coarse-grained molecular modeling. Interaction of CAs, such as miramistin, chlorhexidine, picloxidine, and octenidine, with cardiolipin-containing bilayer was assessed based on the CA coarse-grained models. CAs reduced lipid lateral diffusion coefficients and increased the membrane area per lipid. All CAs, except miramistin, reduced the lipid fatty acid chain order parameters. Adding octenidine at a CA : lipid ratio of 1 : 4 resulted in cardiolipin clustering with subsequent pulling the neutral phosphatidylethanolamine molecules out of the model bilayer. It was found that CАs have the potential for sorption to lipid bilayer, causing clustering of negatively charged lipids. Antiseptic octenidine causes formation of cardiolipin microdomains. Abnormal lateral lipid distribution together with pulling out phosphatidylethanolamine molecules can result in increased lipid bilayer permeability. The most significant reduction of cardiolipin lateral diffusion coefficient by 2.8 ± 0.4 times was observed in the presence of CA chlorhexidine at an antiseptic : lipid ratio of 1 : 4.


2021 ◽  
Author(s):  
Chengheng Liao ◽  
Cherise Ryan Glodowski ◽  
Cheng Fan ◽  
Juan Liu ◽  
Kevin Raynard Mott ◽  
...  

Abstract Metabolic dysregulation, although a prominent feature in breast cancer, remains undercharacterized in patient tumors. By performing untargeted metabolomics analyses on triple-negative breast cancer (TNBC) and Estrogen Receptor (ER) positive patient breast tumors, as well as TNBC patient-derived xenografts (PDXs), we identified two major metabolic groups independent of breast cancer histological subtypes: a “Nucleotide/Carbohydrate-Enriched” group and a “Lipid/Fatty Acid-Enriched” group. Cell lines grown in vivo more faithfully recapitulate the metabolic profiles of patient tumors. Integrated metabolic and gene expression analyses reveal genes that strongly correlate with metabolic dysregulation and predict patient prognosis. As a proof-of-principle, targeting Nucleotide/Carbohydrate-Enriched TNBC cell line or PDX xenografts with a pyrimidine biosynthesis inhibitor, and/or a glutaminase inhibitor, led to therapeutic efficacy. In addition, the pyrimidine biosynthesis inhibitor presents better therapeutic outcomes than chemotherapy agents in multiple murine TNBC models. Our study provides a new stratification of breast tumor samples based on integrated metabolic and gene expression profiling, which guides the selection of newly effective therapeutic strategies targeting rapidly proliferating breast cancer subsets. In addition, we develop a public, interactive data visualization portal (http://brcametab.org) based on the data generated from this study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathrin Beyer ◽  
Stein Atle Lie ◽  
Bodil Bjørndal ◽  
Rolf K. Berge ◽  
Asbjørn Svardal ◽  
...  

AbstractRheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases with several pathogenic pathways in common. Evidence supports an association between the diseases, but the exact underlying mechanisms behind the connection are still under investigation. Lipid, fatty acid (FA) and metabolic profile alterations have been associated with several chronic inflammatory diseases, including RA and periodontitis. Mitochondria have a central role in regulating cellular bioenergetic and whole-body metabolic homeostasis, and mitochondrial dysfunction has been proposed as a possible link between the two disorders. The aim of this cross-sectional study was to explore whole-blood FA, serum lipid composition, and carnitine- and choline derivatives in 78 RA outpatients with different degrees of periodontal inflammation. The main findings were alterations in lipid, FA, and carnitine- and choline derivative profiles. More specifically, higher total FA and total cholesterol concentrations were found in active RA. Elevated phospholipid concentrations with concomitant lower choline, elevated medium-chain acylcarnitines (MC-AC), and decreased ratios of MC-AC and long-chain (LC)-AC were associated with prednisolone medication. This may indicate an altered mitochondrial function in relation to the increased inflammatory status in RA disease. Our findings may support the need for interdisciplinary collaboration within the field of medicine and dentistry in patient stratification to improve personalized treatment. Longitudinal studies should be conducted to further assess the potential impact of mitochondrial dysfunction on RA and periodontitis.


2020 ◽  
Vol 12 (21) ◽  
pp. 9161
Author(s):  
Chaoyi Luo ◽  
Bingxue Zhang ◽  
Jiang Liu ◽  
Xiaoxia Wang ◽  
Fengpeng Han ◽  
...  

Robinia pseudoacacia is widely planted on the Loess Plateau as a strong drought-tolerant and salt-tolerant species for vegetation restoration. However, this mode of pure plantation has triggered great concern over the soil ecosystem. The aim of this study was to explore the effects of the plantation on soil physiochemical properties, soil microorganisms, and the relationship between them in Robinia pseudoacacia plantations of different ages. Four different ages of Robinia pseudoacacia stands, including 10-year-old, 15-year-old, 25-year-old, and 40-year-old (abbreviated as Y10, Y15, Y25, and Y40, respectively) were selected, and 20 soil physicochemical and biological indicators were determined. The variation in soil microbial biomass was influenced by sampling depth, and consistent with the variations in TN (soil total nitrogen) and SOC (soil organic carbon) during 25 years’ artificial forestation. Soil moisture increased significantly at Y15 and then decreased at Y40 but other soil properties remained relatively stable. The contents of phosphor lipid fatty acid (PLFA) of different microbial groups followed the order of B (Bacteria) > G− (Gram-negative) > G+ (Gram-positive) > A (Actinomycetes) > F (Fungi). The ratios of F/B (Fungi to Bacteria) and Sat/Mono (Saturated PLFAs to Monosaturated PLFAs) of different ages of plantations showed a similar trend, i.e., declined first, then rose, and declined again. The ratios of Cy/Pre (Cyclopropyl PLFAs to Precursor PLFAs) and G+/G− (Gram-positive to Gram-negative) of the soil of all ages of plantations showed a trend of slow growth and a trend of rapid growth, respectively. Redundancy analysis showed that the contents of individual PLFAs and total PLFA were positively correlated with SOC and TN, but variations of soil PLFA ratios mostly depended on other soil properties. After artificial forestation, the ratios of F/B and Sat/Mono were lower than before forestation, while the ratio of Cy/Pre varied with different soil layers. The ratio of G+/G− increased with the increase in afforestation time, peaking at the 25th year. The contents of individual PLFAs and total PLFA may be sensitive indicators of SOC and TN within 25 years’ plantation. Lower ratio of F/B and higher G+/G− suggest that the sustainability of the ecosystem is weaker and the fertility of the soil is lower after plantation of Robinia pseudoacacia.


2020 ◽  
Vol 22 (3) ◽  
pp. 18-20
Author(s):  
S. B. Kornyat ◽  

A short essay on the biography and creative path of Vadym Yanovych to the 90th anniversary of his birth is presented. Due to his personal abilities and great perseverance and ability to work, the ability to unite around him scientists and specialists V. G. Yanovych became a famous organizer of biological and agricultural sciences, prepared a group of scientists and headed the school of physiologists and biochemists on individual animal development. Yanovych Vadym Heorhiyovych was born on December 16, 1930 in the village of Komarivka, Volodarsko-Volynsky (now Khoroshivsky) district, Zhytomyr region. From 1962 to 1965 he was a graduate student of the Laboratory of Age Physiology and Biochemistry of the Ukrainian Research Institute of Physiology and Biochemistry of Farm Animals. V. G. Yanovych research concerns the study of ontogenetic features of lipid, fatty acid and ketone body metabolism in organs and tissues of cattle and pigs; ontogenetic features of lipid and protein metabolism in the created cattle and pigs, development of scientific basic lipid nutrition pigs, cattle, poultry and fish; study of the regularity of quantitative use of amino acids in the synthesis of proteins, lipids, glucose, glycogen and energy processes in the tissues of cattle and rats, given the lipogenic role of amino acids in organs and tissues of animals.


2020 ◽  
Vol 98 (8) ◽  
pp. 1149-1160
Author(s):  
Qadeer Aziz ◽  
Jianmin Chen ◽  
Amie J Moyes ◽  
Yiwen Li ◽  
Naomi A Anderson ◽  
...  

Abstract KATP channels in the vasculature composed of Kir6.1 regulate vascular tone and may contribute to the pathogenesis of endotoxemia. We used mice with cell-specific deletion of Kir6.1 in smooth muscle (smKO) and endothelium (eKO) to investigate this question. We found that smKO mice had a significant survival disadvantage compared with their littermate controls when treated with a sub-lethal dose of lipopolysaccharide (LPS). All cohorts of mice became hypotensive following bacterial LPS administration; however, mean arterial pressure in WT mice recovered to normal levels, whereas smKO struggled to overcome LPS-induced hypotension. In vivo and ex vivo investigations revealed pronounced cardiac dysfunction in LPS-treated smKO, but not in eKO mice. Similar results were observed in a cecal slurry injection model. Metabolomic profiling of hearts revealed significantly reduced levels of metabolites involved in redox/energetics, TCA cycle, lipid/fatty acid and amino acid metabolism. Vascular smooth muscle-localised KATP channels have a critical role in the response to systemic infection by normalising cardiac function and haemodynamics through metabolic homeostasis. Key messages • Mice lacking vascular KATP channels are more susceptible to death from infection. • Absence of smooth muscle KATP channels depresses cardiac function during infection. • Cardiac dysfunction is accompanied by profound changes in cellular metabolites. • Findings from this study suggest a protective role for vascular KATP channels in response to systemic infection.


Sign in / Sign up

Export Citation Format

Share Document