Staurosporine-induced cell death in salmonid cells: the role of apoptotic volume decrease, ion fluxes and MAP kinase signaling

APOPTOSIS ◽  
2007 ◽  
Vol 12 (10) ◽  
pp. 1755-1768 ◽  
Author(s):  
Gerhard Krumschnabel ◽  
Tanja Maehr ◽  
Muhammad Nawaz ◽  
Pablo J. Schwarzbaum ◽  
Claudia Manzl
2003 ◽  
Vol 10 (4-6) ◽  
pp. 437-443 ◽  
Author(s):  
Takashi Kojima ◽  
Toshinobu Yamamoto ◽  
Masaki Murata ◽  
Mengdong Lan ◽  
Ken-ichi Takano ◽  
...  

2007 ◽  
Vol 292 (1) ◽  
pp. C517-C525 ◽  
Author(s):  
Matheau A. Julien ◽  
Peiyi Wang ◽  
Carolyn A. Haller ◽  
Jing Wen ◽  
Elliot L. Chaikof

Syndecan-4 (S4) belongs to a family of transmembrane proteoglycans, acts as a coreceptor for growth factor binding as well as cell-matrix and cell-cell interactions, and is induced in neointimal smooth muscle cells (SMCs) after balloon catheter injury. We investigated S4 expression in SMCs in response to several force profiles and the role of MAP kinase signaling pathways in regulating these responses. S4 mRNA expression increased in response to 5% and 10% cyclic strain (4 h: 200 ± 34% and 182 ± 17%, respectively; P < 0.05) before returning to basal levels by 24 h. Notably, the SMC mechanosensor mechanism was reset after an initial 24-h “preconditioning” period, as evident by an increase in S4 gene expression following a change in cyclic stress from 10% to 20% (28 h: 181 ± 1%; P < 0.05). Mechanical stress induced a late decrease in cell-associated S4 protein levels (24 h: 70 ± 6%; P < 0.05), with an associated increase in S4 shedding (24 h: 537 ± 109%; P < 0.05). To examine the role of MAP kinases, cells were treated with U-0126 (ERK1/2 inhibitor), SB-203580 (p38 inhibitor), or JNKI I (JNK/SAPK inhibitor). Late reduction in cell-associated S4 levels was attributed to ERK1/2 and p38 signaling. In contrast, accelerated S4 shedding required both ERK1/2 (5-fold reduction in accelerated shedding; P < 0.05) and JNK/SAPK (4-fold reduction; P < 0.05) signaling. Given the varied functions of S4, stress-induced effects on SMC S4 expression and shedding may represent an additional component of the proinflammatory, growth-stimulating pathways that are activated in response to changes in the mechanical microenvironment of the vascular wall.


2016 ◽  
Vol 54 (6) ◽  
pp. 4560-4583 ◽  
Author(s):  
Richa Gupta ◽  
Rajendra K. Shukla ◽  
Lalit P. Chandravanshi ◽  
Pranay Srivastava ◽  
Yogesh K. Dhuriya ◽  
...  

2019 ◽  
Vol 39 (1) ◽  
pp. 108-115
Author(s):  
Nobutaka Shimizu ◽  
Naoki Wada ◽  
Takahiro Shimizu ◽  
Takahisa Suzuki ◽  
Masahiro Kurobe ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 200-200
Author(s):  
Tamihiro Kamata ◽  
Jing Kang ◽  
Alcino Silva ◽  
Rong Wang ◽  
Andrew D. Leavitt

Abstract Thrombopoietin (Tpo) is the primary cytokine regulator of megakaryocytopoiesis. Tpo engagement of its receptor, Mpl, activates the classic MAP kinase (Raf/MEK/ERK) pathway, but the biological role of MAP kinase signaling in megakaryocytopoiesis remains poorly defined. Raf family kinases control signal flow through the classic MAP kinase pathway from activated cytokine receptors. We therefore undertook a genetic approach to understand the role of MAP kinase signaling and to identify which Raf family member is important for megakaryocytopoiesis. Using data from in vitro B-raf-/- ES cell cultures, fetal liver hematopoietic cells from mid-gestation B-raf-/- embryos, and B-raf-/- chimeric mice, we recently reported that B-Raf acts in a cell autonomous manner to quantitatively affect megakaryocytopoiesis. However, limitations of the chimeric mouse model, and mid-gestation lethality of B-raf-/- embryos precluded a detailed mechanistic understanding of B-Raf activity or the evaluation of B-Raf in adult megakaryocytopoiesis. We therefore generated tissue-restricted B-Raf deficient mice by crossing B-rafflox/flox mice with mice expressing Cre recombinase controlled by the Tie2 promoter/enhancer. The Tie2Cre+/B-rafflox/flox mice were born with normal Mendelian genetics and without gross abnormalities. Circulating leukocytes demonstrated complete recombination of the floxed B-Raf allele, and western blots showed undetectable B-Raf expression in platelet, spleen, and thymus lysates, consistent with complete hematopoietic Cre-mediated recombination. Steady state platelet counts were not altered in the B-Raf deficient animals at baseline: Tie2Cre+/B-rafflox/flox mice = 788 +/−57 x 103/mm3; Tie2Cre-/B-rafflox/flox mice 800 +/−40 x 103/mm3 (p=0.76, n=4). However, Tie2Cre+/B-rafflox/flox mice had a markedly impaired platelet count rise following Tpo injection, with peak counts of 3,375 +/−752 x 103/mm3 compared with 5,320 +/−606 x 103/mm3 for Tie2Cre-/B-rafflox/flox mice (p=0.0147, n=4) at 6 days post injection. In vitro expansion of CD41+ cells from Tie2Cre+/B-rafflox/flox bone marrow was only a third that of control mice, suggesting that the impaired in vivo platelet rise following Tpo reflects, at least in part, a decreased expansion of megakaryocyte lineage cells. Day 4 Tie2Cre+/B-rafflox/flox bone marrow cultures also yielded decreased low (2N-8N) and high (>32N) ploidy CD41+ cells compared with marrow from Tie2Cre-/B-rafflox/flox mice, while intermediate (16N-32N) ploidy CD41+ megakaryocytes were relatively preserved. TUNEL analysis revealed increased apoptotic death of the high ploidy (>32N) cells, a second possible mechanism contributing to the impaired platelet rise following Tpo injection. Together, our data demonstrate that the B-Raf/MAP kinase pathway is required for normal adult Tpo-induced thrombopoiesis through its effect on megakaryocyte lineage expansion and apoptotic cell death of mature megakaryocytes. Additional analysis is now underway to more fully define the role of B-Raf in megakaryocytopoiesis, including detailed biochemical studies to determine how the absence of B-Raf impacts intracellular signaling during this complex developmental process.


2003 ◽  
Vol 10 (4) ◽  
pp. 437-443
Author(s):  
Takashi Kojima ◽  
Toshinobu Yamamoto ◽  
Masaki Murata ◽  
Mengdong Lan ◽  
Ken-ichi Takano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document