Inputs and Internal Cycling of Nitrogen to a Causeway Influenced, Hypersaline Lake, Great Salt Lake, Utah, USA

2017 ◽  
Vol 23 (3) ◽  
pp. 199-216 ◽  
Author(s):  
D. Naftz
2013 ◽  
Vol 52 (2) ◽  
pp. 341-362 ◽  
Author(s):  
Kristen N. Yeager ◽  
W. James Steenburgh ◽  
Trevor I. Alcott

AbstractAlthough smaller lakes are known to produce lake-effect precipitation, their influence on the precipitation climatology of lake-effect regions remains poorly documented. This study examines the contribution of lake-effect periods (LEPs) to the 1998–2009 cool-season (16 September–15 May) hydroclimate in the region surrounding the Great Salt Lake, a meso-β-scale hypersaline lake in northern Utah. LEPs are identified subjectively from radar imagery, with precipitation (snow water equivalent) quantified through the disaggregation of daily (i.e., 24 h) Cooperative Observer Program (COOP) and Snowpack Telemetry (SNOTEL) observations using radar-derived precipitation estimates. An evaluation at valley and mountain stations with reliable hourly precipitation gauge observations demonstrates that the disaggregation method works well for estimating precipitation during LEPs. During the study period, LEPs account for up to 8.4% of the total cool-season precipitation in the Great Salt Lake basin, with the largest contribution to the south and east of the Great Salt Lake. The mean monthly distribution of LEP precipitation is bimodal, with a primary maximum from October to November and a secondary maximum from March to April. LEP precipitation is highly variable between cool seasons and is strongly influenced by a small number of intense events. For example, at a lowland (mountain) station in the lake-effect-precipitation belt southeast of the Great Salt Lake, just 12 (13) events produce 50% of the LEP precipitation. Although these results suggest that LEPs contribute modestly to the hydroclimate of the Great Salt Lake basin, infrequent but intense events have a profound impact during some cool seasons.


2019 ◽  
Vol 16 (5) ◽  
pp. 303 ◽  
Author(s):  
Ronald A. Glabonjat ◽  
Georg Raber ◽  
Kenneth B. Jensen ◽  
Florence Schubotz ◽  
Eric S. Boyd ◽  
...  

Environmental contextArsenic is a globally distributed element, occurring in various chemical forms with toxicities ranging from harmless to highly toxic. We examined sediment samples from Great Salt Lake, an extreme salt environment, and found a variety of organoarsenic species not previously recorded in nature. These new compounds are valuable pieces in the puzzle of how organisms detoxify arsenic, and in our understanding of the global arsenic cycle. AbstractArsenic-containing lipids are natural products found predominantly in marine organisms. Here, we report the detection of known and new arsenolipids in sediment samples from Great Salt Lake, a hypersaline lake in Utah, USA, using high-performance liquid chromatography in combination with both elemental and molecular mass spectrometry. Sediments from four investigated sites contained appreciable quantities of arsenolipids (22–312ng As g−1 sediment) comprising several arsenic-containing hydrocarbons and 20 new compounds shown to be analogues of phytyl 2-O-methyl dimethylarsinoyl riboside. We discuss potential sources of the detected arsenolipids and find a phytoplanktonic origin most plausible in these algal detritus-rich salt lake sediments.


The Condor ◽  
2019 ◽  
Vol 121 (2) ◽  
Author(s):  
Maureen G Frank ◽  
Michael R Conover

Abstract Great Salt Lake (GSL) is the largest hypersaline lake in North America and is the fall staging area for a high proportion of North America’s Wilson’s Phalaropes (Phalaropus tricolor) and Red-necked Phalaropes (Phalaropus lobatus). Unfortunately, diversion of freshwater for agriculture and development has decreased the size of GSL by 48%. To assess the potential impact of a smaller GSL on phalaropes, we collected data from 2013 to 2015 from sites where large, dense flocks of phalaropes congregated and sites where there were no phalaropes. At each site, we measured the densities of invertebrates that were preyed upon by phalaropes, including larval and adult brine flies (Ephydridae), adult brine shrimp (Artemia franciscana), chironomid larvae (Chironomidae), and corixid adults (Corixidae). Abiotic characteristics measured included water depth, water salinity, water temperature, wind speed, and benthic substrate. We analyzed high-salinity sites separately from low-salinity sites because they contained different invertebrates. High-salinity sites were in Carrington and Gilbert bays and were relatively deep (mostly <2 m). At the high-salinity sites, phalaropes exhibited a preference for sites with an abundance of adult brine flies and for microbialite substrates. The low-salinity sites were in Ogden and Farmington bays and were shallow (<1 m). At low-salinity sites, large phalarope flocks were more likely to occur at sites that were shallower, less saline, and had a high biomass of benthic macroinvertebrates. Our results indicate that physical features and prey availability are both important in determining phalarope habitat use at GSL. Phalaropes prefer to use shallower parts of GSL and brackish waters. These areas will be especially impacted by decreased freshwater inflow into GSL.


2016 ◽  
Vol 13 (19) ◽  
pp. 5511-5526 ◽  
Author(s):  
Anthony Bouton ◽  
Emmanuelle Vennin ◽  
Julien Boulle ◽  
Aurélie Pace ◽  
Raphaël Bourillot ◽  
...  

Abstract. The Great Salt Lake is a modern hypersaline lake, in which an extended modern and ancient microbial sedimentary system has developed. Detailed mapping based on aerial images and field observations can be used to identify non-random distribution patterns of microbial deposits, such as paleoshorelines associated with extensive polygons or fault-parallel alignments. Although it has been inferred that climatic changes controlling the lake level fluctuations explain the distribution of paleoshorelines and polygons, straight microbial deposit alignments may underline a normal fault system parallel to the Wasatch Front. This study is based on observations over a decimetre to kilometre spatial range, resulting in an integrated conceptual model for the controls on the distribution of the microbial deposits. The morphology, size and distribution of these deposits result mainly from environmental changes (i.e. seasonal to long-term water level fluctuations, particular geomorphological heritage, fault-induced processes, groundwater seepage) and have the potential to bring further insights into the reconstruction of paleoenvironments and paleoclimatic changes through time. New radiocarbon ages obtained on each microbial macrofabric described in this study improve the chronological framework and question the lake level variations that are commonly assumed.


2003 ◽  
Vol 30 (2) ◽  
pp. 317-330 ◽  
Author(s):  
L. J. Dorr ◽  
D. H. Nicolson ◽  
L. K. Overstreet

Howard Stansbury's classic work is bibliographically complex, with two true editions as well as multiple issues of the first edition. The first edition was printed in Philadelphia; its 487 stereotyped pages were issued in 1852 under two different titles with three variant title-pages (an official US government issue and two trade issues). A second edition was printed in Washington in 1853 and had 495 typeset pages (with corrections and additions in the appendices). The issue of 1855 is identical to the 1852 trade issue, except for the change of the date on the title-page. Each issue and edition, with its bindings and plates, is described.


1985 ◽  
Author(s):  
Gerald G. Plantz ◽  
Cynthia L. Appel ◽  
David W. Clark ◽  
Patrick M. Lambert ◽  
Robert L. Puryear

Author(s):  
David L. Naftz ◽  
William P. Johnson ◽  
Michael L. Freeman ◽  
Kimberly Beisner ◽  
Ximena Diaz ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document