Impact of Cyanobacterial Associate and Heterotrophic Bacteria on Dissolved Organic Carbon and Metal in Moss and Peat Leachate: Application to Permafrost Thaw in Aquatic Environments

2017 ◽  
Vol 23 (5-6) ◽  
pp. 331-358 ◽  
Author(s):  
Liudmila S. Shirokova ◽  
Joachim Labouret ◽  
Melissa Gurge ◽  
Emmanuelle Gérard ◽  
Irina S. Ivanova ◽  
...  
2020 ◽  
Author(s):  
Michelle N. Simone ◽  
Kai G. Schulz ◽  
Joanne M. Oakes ◽  
Bradley D. Eyre

Abstract. Estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to individual and combined future climate stressors of warming (from Δ−3 °C to Δ+5 °C on ambient mean temperatures) and ocean acidification (OA, ~2 times the current partial pressure of CO2, pCO2) was investigated ex situ. Warming alone increased sediment heterotrophy, resulting in a proportional increase in sediment DOC uptake, with sediments becoming net sinks of DOC (3.5 to 8.8 mmol-C m−2 d−1) at warmer temperatures (Δ+3 °C and Δ+5 °C, respectively). This temperature response changed under OA conditions, with sediments becoming more autotrophic and a greater sink of DOC (1 to 4 times greater than under current-pCO2). This response was attributed to the stimulation of heterotrophic bacteria with the autochthonous production of labile organic matter by microphytobenthos. Extrapolating these results to the global area of unvegetated subtidal estuarine sediments, the future climate of warming (Δ+3 °C) and OA may decrease the estuarine export of DOC by ~80 % (~150 Tg-C yr−1) and have a disproportionately large impact on the global DOC budget.


2007 ◽  
Vol 58 (2) ◽  
pp. 222 ◽  
Author(s):  
Suzanne McDonald ◽  
Jennifer M. Pringle ◽  
Paul D. Prenzler ◽  
Andrea G. Bishop ◽  
Kevin Robards

Dissolved organic carbon (DOC) is a vital resource for heterotrophic bacteria in aquatic ecosystems. The bioavailability of fulvic acid, which comprises the majority of aquatic DOC, is not well understood. The present study examined the bioavailability of bulk DOC and fulvic acid from two contrasting but inter-related water bodies: the Murrumbidgee River and adjacent Berry Jerry Lagoon. Bacteria utilised fulvic acids; however, bulk DOC was more bioavailable. Bacteria were able to utilise Murrumbidgee River DOC and fulvic acid more readily than Berry Jerry Lagoon DOC and fulvic acid, suggesting that the quality of carbon may be an important factor to consider when evaluating lateral exchange of nutrients between the main channel and floodplain. Chemical characteristics of fulvic acids appeared to explain some of the variation in fulvic acid bioavailability. The higher the molecular weight and complexity of the fulvic acid, the longer it took for bacteria to utilise the substrate (lag phase), but the larger the number of bacteria that grew on the substrate. The present study calls attention to the need for further multidisciplinary studies to address the quality of carbon in riverine-floodplain ecosystems.


2017 ◽  
Author(s):  
Martin Berggren ◽  
Marcus Klaus ◽  
Balathandayuthabani Panneer Selvam ◽  
Lena Ström ◽  
Hjalmar Laudon ◽  
...  

Abstract. Dissolved organic carbon (DOC) may be removed, transformed or added during water transit through lakes, resulting in qualitative changes in DOC composition and pigmentation (color). However, the process-based understanding of these changes is incomplete, especially for headwater lakes. We hypothesized that because heterotrophic bacteria preferentially consume non-colored DOC, while photochemical processing remove colored fractions, the overall changes in DOC quality and color (absorbance) upon water passage through a lake depends on the relative importance of these two processes, accordingly. To test this hypothesis we combined laboratory experiments with field studies in nine boreal lakes, assessing both the relative importance of different DOC decay processes (biological or photo-chemical) and the loss of color during water transit time (WTT) through the lakes. We found that photo-chemistry qualitatively dominated the DOC transformation in the epilimnia of relatively clear headwater lakes, resulting in selective losses of colored DOC. However, in highly pigmented brown-water lakes (absorbance at 420 nm > 7 m−1) biological processes dominated, and there was no systematic relationship between color loss and WTT. Instead in situ data and dark experiments supported our hypothesis of selective microbial removal of non-pigmented DOC, mainly of low molecular weight, leading to persistent water color over time in these lakes. Our study shows that individual brown headwater lakes do not conform to the commonly reported pattern of selective removal of colored constituents in freshwaters, but rather the DOC shows a sustained degree of pigmentation upon transit through these lakes.


2013 ◽  
Vol 10 (3) ◽  
pp. 2129-2143 ◽  
Author(s):  
S. Lasternas ◽  
M. Piedeleu ◽  
P. Sangrà ◽  
C. M. Duarte ◽  
S. Agustí

Abstract. The organic carbon fluxes mediated by planktonic communities in two cyclonic eddies (CEs) and two anticyclonic eddies (AEs) at the Canary Eddy Corridor were studied and compared with the dynamics in two far-field (FF) stations located outside the eddies. We observed favorable conditions and signs for upwelling at the center of CEs and for downwelling and mixing at the centers of AEs. CEs were characterized by a higher concentration of nutrients and the highest concentration of chlorophyll a (chl a), associated with the highest abundance of microphytoplankton and diatoms. AEs displayed concentrations of chl a values and nutrients similar to those at the FF stations, except for the highest ammonium concentration occurring at AE and a very low concentration of phosphorus at FF stations. AEs were transient systems characterized by an increasing abundance of picophytoplankton and heterotrophic bacteria. While primary production was similar between the systems, the production of dissolved organic carbon (PDOC) was significantly higher in the AEs. Phytoplankton cell mortality was lowest in the CEs, and we found higher cell mortality rates at AE than at FF stations, despite similar chl a concentration. Environmental changes in the AEs have been significantly prejudicial to phytoplankton as indicated by higher phytoplankton cell mortality (60% of diatoms cells were dead) and higher cell lysis rates. The adverse conditions for phytoplankton associated with the early-stage anticyclonic systems, mainly triggered by active downwelling, resulted in higher cell mortality, forcing photosynthesized carbon to fuel the dissolved pool.


Sign in / Sign up

Export Citation Format

Share Document