The impact of heterotrophic bacteria on recalcitrant dissolved organic carbon formation in a typical karstic river

Author(s):  
Qiufang He ◽  
Qiong Xiao ◽  
Jiaxing Fan ◽  
Haijuan Zhao ◽  
Min Cao ◽  
...  
2016 ◽  
Vol 141 ◽  
pp. 153-167 ◽  
Author(s):  
J. Zhou ◽  
M. Kotovitch ◽  
H. Kaartokallio ◽  
S. Moreau ◽  
J.-L. Tison ◽  
...  

2017 ◽  
Vol 23 (5-6) ◽  
pp. 331-358 ◽  
Author(s):  
Liudmila S. Shirokova ◽  
Joachim Labouret ◽  
Melissa Gurge ◽  
Emmanuelle Gérard ◽  
Irina S. Ivanova ◽  
...  

2016 ◽  
Vol 67 (9) ◽  
pp. 1346 ◽  
Author(s):  
Todd A. Wallace ◽  
Deborah Furst

The relative importance of autochthonous and allochthonous organic material in fuelling ecosystem metabolism is increasingly understood for some river systems. However, in south-eastern Australia, the majority of studies have been conducted during low flows when the supply of allochthonous carbon was limited. Consequently, the importance of episodic inputs of terrestrially derived material in supporting these food webs remains poorly understood. We assessed the influence of return flows from two different scales of environmental watering actions on dissolved organic carbon and open-water productivity in receiving waters adjacent to the watered area. For the wetland-scale event, gross primary productivity and ecosystem respiration increased in the receiving waters during the period of return flows. During the floodplain-scale watering, differences were observed among sites. Within the managed inundation zone, values for net ecosystem productivity switched from near zero during the baseline to strongly negative during the impact period, whereas values at the river sites were either near zero or positive. The results contribute to our understanding of the relative role of allochthonous material in supporting aquatic food webs in lowland rivers, and demonstrate potential for watering actions to have a positive influence on riverine productivity during periods of low water availability.


2016 ◽  
Vol 13 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Xiao-guo Wang ◽  
Chang-sheng Li ◽  
Yong Luo ◽  
Ke-ke Hua ◽  
Ming-hua Zhou

2016 ◽  
Vol 13 (6) ◽  
pp. 1863-1875 ◽  
Author(s):  
Zahra Thomas ◽  
Benjamin W. Abbott ◽  
Olivier Troccaz ◽  
Jacques Baudry ◽  
Gilles Pinay

Abstract. Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43−) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and the probability of human disturbance provides a useful perspective for evaluating vulnerability of aquatic ecosystems and for managing systems to maintain agricultural production while minimizing leakage of nutrients.


2020 ◽  
Author(s):  
Michelle N. Simone ◽  
Kai G. Schulz ◽  
Joanne M. Oakes ◽  
Bradley D. Eyre

Abstract. Estuaries make a disproportionately large contribution of dissolved organic carbon (DOC) to the global carbon cycle, but it is unknown how this will change under a future climate. As such, the response of DOC fluxes from microbially dominated unvegetated sediments to individual and combined future climate stressors of warming (from Δ−3 °C to Δ+5 °C on ambient mean temperatures) and ocean acidification (OA, ~2 times the current partial pressure of CO2, pCO2) was investigated ex situ. Warming alone increased sediment heterotrophy, resulting in a proportional increase in sediment DOC uptake, with sediments becoming net sinks of DOC (3.5 to 8.8 mmol-C m−2 d−1) at warmer temperatures (Δ+3 °C and Δ+5 °C, respectively). This temperature response changed under OA conditions, with sediments becoming more autotrophic and a greater sink of DOC (1 to 4 times greater than under current-pCO2). This response was attributed to the stimulation of heterotrophic bacteria with the autochthonous production of labile organic matter by microphytobenthos. Extrapolating these results to the global area of unvegetated subtidal estuarine sediments, the future climate of warming (Δ+3 °C) and OA may decrease the estuarine export of DOC by ~80 % (~150 Tg-C yr−1) and have a disproportionately large impact on the global DOC budget.


2007 ◽  
Vol 58 (2) ◽  
pp. 222 ◽  
Author(s):  
Suzanne McDonald ◽  
Jennifer M. Pringle ◽  
Paul D. Prenzler ◽  
Andrea G. Bishop ◽  
Kevin Robards

Dissolved organic carbon (DOC) is a vital resource for heterotrophic bacteria in aquatic ecosystems. The bioavailability of fulvic acid, which comprises the majority of aquatic DOC, is not well understood. The present study examined the bioavailability of bulk DOC and fulvic acid from two contrasting but inter-related water bodies: the Murrumbidgee River and adjacent Berry Jerry Lagoon. Bacteria utilised fulvic acids; however, bulk DOC was more bioavailable. Bacteria were able to utilise Murrumbidgee River DOC and fulvic acid more readily than Berry Jerry Lagoon DOC and fulvic acid, suggesting that the quality of carbon may be an important factor to consider when evaluating lateral exchange of nutrients between the main channel and floodplain. Chemical characteristics of fulvic acids appeared to explain some of the variation in fulvic acid bioavailability. The higher the molecular weight and complexity of the fulvic acid, the longer it took for bacteria to utilise the substrate (lag phase), but the larger the number of bacteria that grew on the substrate. The present study calls attention to the need for further multidisciplinary studies to address the quality of carbon in riverine-floodplain ecosystems.


Sign in / Sign up

Export Citation Format

Share Document