Study of simultaneous presence of DD and PP electric fields during the geomagnetic storm of November 7–8, 2004 and resultant TEC variation over the Indian Region

2014 ◽  
Vol 350 (2) ◽  
pp. 459-469 ◽  
Author(s):  
P. Galav ◽  
Shweta Sharma ◽  
S. S. Rao ◽  
B. Veenadhari ◽  
T. Nagatsuma ◽  
...  
2017 ◽  
Vol 122 (12) ◽  
pp. 12,517-12,533 ◽  
Author(s):  
J. Moro ◽  
L. C. A. Resende ◽  
C. M. Denardini ◽  
J. Xu ◽  
I. S. Batista ◽  
...  

2017 ◽  
Vol 35 (6) ◽  
pp. 1309-1326 ◽  
Author(s):  
Patricia Mara de Siqueira Negreti ◽  
Eurico Rodrigues de Paula ◽  
Claudia Maria Nicoli Candido

Abstract. Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3592
Author(s):  
Semenov ◽  
Dedyk ◽  
Mylnikov ◽  
Pakhomov ◽  
Es'kov ◽  
...  

Multiferroic materialsare widely used in microelectronics because they are sensitive to elastic, magnetic, and electric fields and there is an intrinsic coupling between them. In particular, transition metal-doped BaTiO3 is consideredas a viable multiferroic because of the simultaneous presence of ferroelectricity and magnetism.In this work, we study the electrical and thermal properties of Mn-doped BaTiO3 ceramics that can be used for multicaloric applications. We found that Mn doping leads to the broadening and shifting of the phase transition accompanied with simultaneous decrease of latent heat and entropy. Mn doping causes a decrease in the bulk resistivity while contact resistance remains intact. Doped ceramics can withstand high electric fields(up to 40 kV/cm) and exhibit linear I-V characteristics followed by the Schottkylimited current in contrast to earlier observations. As such, these ceramics are promising for multicaloric applications.


2021 ◽  
Author(s):  
Aurora Lopez Rubio ◽  
Seebany Datta-Barua ◽  
Gary Bust

<p>During geomagnetic storms, the space environment can be drastically altered as the plasma in the upper atmosphere, or ionosphere, moves globally. This plasma redistribution is mainly caused by storm-time electric fields, but another important driver of the velocity of the ions in the plasma is the neutral winds. These winds refer to the movement of the neutral particles that are part of the thermospheric layer of the atmosphere, that can drag the plasma. Geomagnetic storms increase the neutral winds, due to the heating of the thermosphere that comes from the storm. In this study we want to understand how these ionospheric drivers affect the ionosphere behavior because, among other reasons, during geomagnetic storms the plasma can refract and diffract trans-ionospheric signals and, consequently, can cause problems in the navigation systems such as GNSS (Global Navigation Satellite System)/GPS (Global Positioning System) that use the information from the signals.</p><p>In this work, our objective is to estimate the electric fields and neutral winds globally during a geomagnetic storm. Global GNSS TEC (total electron content) measurements are ingested by the Ionospheric Data Assimilation 4-Dimensional (IDA4D) algorithm [1], whose output is the electron density rate over a grid at different time steps during a geomagnetic storm. The density rates are treated as “observations” in EMPIRE (Estimating Model Parameters from Ionospheric Reverse Engineering), which is a data assimilation algorithm based on the plasma continuity equation [2,3,4]. Then, the EMPIRE “observations” are used to estimate corrections to the electric field and neutral winds by solving a Kalman filter. To study these drivers with EMPIRE, basis functions are used to describe them. For the global potential field, spherical harmonics are used.</p><p>To have a global estimation of the neutral winds, we introduce vector spherical harmonics as the basis function for the first time in EMPIRE. The vector spherical harmonics are used to model orthogonal components of neutral wind in the zonal (east-west) and meridional (north-south) directions. EMPIRE’s Kalman filter needs the error covariance of the vector spherical harmonics decomposition. To calculate it, the basis function is fitted to the model HWM14 (Horizonal Wind Model) values of the neutral winds and the error between the fitting and the model is studied. Later, we study the global potential field and global neutral winds over time to understand how much each driver contributes to the plasma redistribution during the geomagnetic storm on October 25<sup>th</sup> 2011. We compare the results to FPI (Fabry-Perot Interferometer) neutral winds measurements to validate the results.   </p><p>[1] G.S.Bust, G.Crowley, T.W.Garner, T.L.G.II, R.W.Meggs, C.N.Mitchell, P.S.J.Spencer, P.Yin, and B.Zapfe, Four-dimensional gps imaging of space weather storms, Space Weather, 5 (2007),  doi:10.1029/2006SW000237.</p><p>[2] D.S.Miladinovich, S.Datta-Barua, G.S.Bust, and J.J.Makela, Assimilation of thermospheric measurements for ionosphere-thermosphere state estimation, Radio Science, 51 (2016).</p><p>[3] D.S.Miladinovich, S.Datta-Barua, A.Lopez, S. Zhang, and G.S.Bust, Assimilation of gnss measurements for estimation of high-latitude convection processes, Space Weather, 18 (2020).</p><p>[4] G.S.Bust and S.Datta-Barua, Scientific investigations using ida4d and empire, in Modeling the Ionosphere-Thermosphere System, J. Huba, R. Schunk, and G. Khazanov, eds., John Wiley & Sons, Ltd, 1 ed., 2014.</p>


2014 ◽  
Vol 32 (6) ◽  
pp. 659-668 ◽  
Author(s):  
M. Hairston ◽  
N. Maruyama ◽  
W. R. Coley ◽  
R. Stoneback

Abstract. During a large geomagnetic storm, the electric field from the polar ionosphere can expand far enough to affect the mid-latitude and equatorial electric fields. These changes in the equatorial zonal electric field, called the penetration field, will cause changes in the meridional ion flows that can be observed by radars and spacecraft. In general this E × B ion flow near the equator caused by the penetration field during undershielding conditions will be upward on the dayside and downward on the nightside of the Earth. Previous analysis of the equatorial meridional flows observed by CINDI instrument on the C/NOFS spacecraft during the 26 September 2011 storm showed that all of the response flows on the dayside were excess downward flows instead of the expected upward flows. These observed storm-time responses are compared to a prediction from a physics-based coupled model of thermosphere–ionosphere–inner-magnetosphere in an effort to explain these observations. The model results suggest that the equatorial downward flow could be attributed to a combined effect of the overshielding and disturbance dynamo processes. However, some discrepancy between the model and observation indicates a need for improving our understanding of how sensitive the equatorial electric field is to various model input parameters that describe the magnetosphere–ionosphere coupling processes.


2000 ◽  
Vol 18 (4) ◽  
pp. 461-477 ◽  
Author(s):  
A. A. Namgaladze ◽  
M. Förster ◽  
R. Y. Yurik

Abstract. Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day-light conditions.Key words: Atmospheric composition and structure (thermosphere · composition and chemistry) · Ionosphere (ionosphere · atmosphere interactions; modelling and forecasting)


2008 ◽  
Vol 113 (A6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Takashi Kikuchi ◽  
Kumiko K. Hashimoto ◽  
Kenro Nozaki

Sign in / Sign up

Export Citation Format

Share Document