Generation of reactive oxygen species by umbilical blood cells and immune status of newborns at risk of infectious inflammatory diseases

2006 ◽  
Vol 142 (3) ◽  
pp. 333-337 ◽  
Author(s):  
V. G. Safronova ◽  
N. K. Matveeva ◽  
V. N. Mal’tseva ◽  
O. E. Bondar’ ◽  
N. V. Avkhacheva ◽  
...  
2015 ◽  
Vol 8 (2) ◽  
pp. 151-175 ◽  
Author(s):  
Babatunji Oyinloye ◽  
Abiola Adenowo ◽  
Abidemi Kappo

Transfusion ◽  
2019 ◽  
Vol 59 (4) ◽  
pp. 1312-1323
Author(s):  
Man Zhao ◽  
Qianqian Zhou ◽  
Chulin He ◽  
Yulong Zhang ◽  
Zhengjun Wang ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1009-1009 ◽  
Author(s):  
Sara Gardenghi ◽  
Pedro Ramos ◽  
Cindy N. Roy ◽  
Nancy C. Andrews ◽  
Elizabeta Nemeth ◽  
...  

Abstract Abstract 1009 The principal regulator of iron homeostasis, the hepatic peptide hepcidin (Hamp), degrades the iron-transport protein ferroportin (Fpn) localized on absorptive enterocytes, hepatocytes and macrophages. Low Hamp expression has been associated with iron overload in patients and mice affected by β-thalassemia intermedia (th3/+). Our hypothesis is that more iron is absorbed than required for erythropoiesis in β-thalassemia. Therefore, we propose that limiting the dietary iron intake of th3/+ mice either by feeding them a low iron diet or increasing their Hamp expression will have a beneficial effect on iron overload with no effects on erythropoiesis. In particular, since Hamp expression is low in β-thalassemia, a moderate increase of Hamp expression should not interfere with erythropoiesis by preventing release of iron from macrophages. However, we predict that very high levels of Hamp expression will limit the recycling of iron from macrophages, thereby exacerbating the anemia. We first analyzed wt and th3/+ mice fed diets containing a physiological amount of iron (35 ppm) or low iron (2.5 ppm) for 1 and 5 months. These mice were then compared to wt and th3/+ mice expressing a transgenic Hamp (THamp and THamp/th3, respectively). In wt mice, the low-iron diet decreased tissue iron levels leading to anemia (Hb: 14.6±0.7 g/dL and 8.6±2.4 g/dL at 1 and 5 months, respectively). In th3/+ mice fed the low-iron diet, the amount of iron in the liver and spleen decreased over time and after 5 months was 10 times lower than at the beginning of treatment. However, in this case the low-iron diet did not worsen the anemia, (Hb: 8.2±1.3 g/dL vs. 7.8±1.8 g/dL at 1 and 5 months, respectively). In the case of THamp and THamp/th3 mice, we stratified those animals whose transgenic Hamp expression was moderate (2-4 higher) or high (>4 times higher) compared to the endogenous Hamp expression in control mice. In THamp animals expressing a moderate level of Hamp, the total iron content of the liver was decreased (65±21 μg vs. 131±31 μg in wt controls) while no significant changes were detected in the spleen. THamp mice also exhibited anemia (Hb: 11.2±1.8 g/dL vs. 13.9±1.1 g/dL at 1 month). The iron content of the liver and spleen was reduced in THamp/th3 (127±86 μg vs. 234±49 μg and 131±88 μg vs. 271±74 μg, respectively, compared to th3/+ controls), while their hematological values were dramatically improved. Splenomegaly was also significantly reduced. Similar findings were observed at 5 months. Looking at animals expressing high levels of transgenic Hamp, both THamp and THamp/th3 mice exhibited vast accumulations of iron in macrophages, profound anemia, reticulocytosis and increased splenomegaly, confirming that high levels of Hamp block iron recycling and are detrimental to erythropoiesis. Interestingly, in THamp/th3 mice expressing a moderate level of Hamp we observed that the increase in hemoglobin levels was associated with increased red cell numbers but reduced mean corpuscular hemoglobin levels. Paradoxically, this could indicate that reduction of the anemia in THamp/th3 mice is mediated by decreased heme synthesis. α-Globin/heme aggregates lead to ineffective erythropoiesis and a limited red cell life span by producing reactive oxygen species and altering the structure of red cell membranes. Compared to th3/+ mice, THamp/th3 mice exhibited reduced heme contents, insoluble membrane-bound α-globins and reactive oxygen species resulting in an increased life span and more normal morphology of their red blood cells. While the number of red blood cells was increased, the number of reticulocytes, and the total number of erythroid precursors in the spleen were reduced. This was associated with a reduction in reactive oxygen species. Cell cycle analysis of the erythroid cells at different stages of differentiation, expression of heme related proteins and synthesis of α- and β-globin chains in THamp/th3 mice is in progress. Overall, this study indicates that use of hepcidin might be effective in reducing iron overload and improving erythropoiesis in β-thalassemia thereby limiting toxicity due to heme not incorporated into the adult hemoglobin tetramer. In conclusion, we believe this study provides the first evidence that hepcidin could be utilized for the treatment of abnormal iron absorption in β-thalassemia and other related disorders, with additional beneficial effects on ineffective erythropoiesis, splenomegaly and anemia. Disclosures: Nemeth: Intrinsic Life Sciences: Employment, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1029-1029
Author(s):  
Jihyun Song ◽  
Donghoon Yoon ◽  
Perumal Thiagarajan ◽  
Josef T. Prchal

Abstract Abstract 1029 Red blood cells (RBCs) continuously transport large amount of oxygen over their life time and require precise mechanism to protect themselves from oxidative stress. RBCs cannot respond to rapid oxygen changes by synthesizing enzymes and other proteins. Chronic hypoxia enhances erythropoiesis with ensuing polycythemia. With return to normoxia, red cell mass is reduced by neocytolysis, characterized by selective hemolysis of the young RBCs. Neocytolysis was described in astronauts, in those descending from high-altitude, and in newborn babies leaving hypoxic environment of uterus. While it has been suggested that neocytolysis is caused by very low erythropoietin levels, its molecular basis remains obscure. However, we argue against this postulate since RBCs lack pathway for erythropoietin signaling. We hypothesize that rapid changes of hypoxia-regulated hypoxia-inducible transcription factors (HIFs) regulated genes (other than erythropoietin) may be responsible, one such a gene (BNIP3L/NIX) regulates mitochondrial autophagy. Upon normoxic return young RBCs generated in hypoxia cannot cope because of decreased levels of oxidant protecting defenses regulated by HIF-dependent FOXO3a transcription factor. In order to test this hypothesis, we created an animal model depicted in Figure 1. We placed C57/BL6 mice in a hypoxia chamber at 12 % O2, (equivalent to 4500 m of altitude) for 10 days and then returned them to a normoxic condition. We measured hematocrit levels and reticulocyte count before and after hypoxia treatment.Fig. 1Hematocrit level and reticulocyte count before hypoxia and post hypoxiaFig. 1. Hematocrit level and reticulocyte count before hypoxia and post hypoxia Legend: BH: Before Hypoxia, PH: Post Hypoxia *; P value ≤ 0.05, **; P value ≤0.01, ***; P value ≤0.001, P value calculated using student T test comparing values before hypoxia. Epo levels increased 1.6 fold during hypoxia and then reduced up to undetectable level at PH day 4. Then Epo gradually increased to ∼3 fold during PH day 10∼28. During PH day 10∼21, the mice became anemic, even though Epo and reticulocytes remained high. These results suggest that neocytolysis occurs after several days of exposure to normoxia and it is not caused by Epo mechanism. To investigate the molecular basis of the observed neocytolysis in this mouse model, we measured the mitochondrial content in reticulocytes, anti-oxidative enzyme activities (glutathione peroxidase and reductase, catalase, and superoxide dismutase) that scavenge reactive oxygen species in RBCs, possibly coexistent with up-regulation of mitochondrial content upon normoxic return. Reticulocytes at returning normoxia generated more mitochondria several days after normoxic return, In contrast catalase activity was reduced during hypoxia and at PH day 4, but by PH day 10 its activity increased, and the catalase activity decrease coincided with a decrease in hematocrit. To investigate whether hypoxia drives neocytolysis under our conditions, we tested 2 known HIF target genes, Bnip3L (also called Nix), a pro-apoptotic protein that causes mitochondrial autophagy. Bnip3L mRNA was induced 9x during hypoxia and reduced 2x at PH day 6, compared to before hypoxia. We also analyzed Foxo3a, a transcription factor, in sorted reticulocytes (CD71+/TER119+/Mitochondria+) which regulates cellular stress responses such as catalase and superoxide dismutase (SOD). Foxo3a was slightly increased during hypoxia and reduced 4x at PH day 6 from levels before hypoxia. In conclusion, we developed mouse model to study neocytolysis. Our data suggest that increased mitochondria retained by Bnip3L repression leads to an accumulation of reactive oxygen species (whether in reticulocytes, platelets or leukocytes), and that young RBCs formed in hypoxia with insufficient antioxidant enzyme activity cannot survive because of excessive reactive oxygen species, with ensuing hemolysis. Studies of the role of other blood cells, as well as human studies of mountain climbers upon their return to sea level, are in progress. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document