Understanding the cyclic response of RC walls with setback discontinuities through a finite element model and a strut-and-tie model

2019 ◽  
Vol 17 (12) ◽  
pp. 6547-6563 ◽  
Author(s):  
Leonardo M. Massone ◽  
Ignacio Manríquez ◽  
Sebastián Díaz ◽  
Fabián Rojas ◽  
Ricardo Herrera
Author(s):  
Lei Zhang ◽  
Y H Chui

A mass timber panel-concrete (MTPC) composite floor system consists of a timber panel in the tensile zone, a concrete layer in the compression zone, and shear connectors between timber and concrete. The notched connections that are cut in timber and connected with concrete by the interlocking effect are often classified as the best type of connection system in terms of stiffness and load-carrying capacity. To study the effect of notch geometry to the performance of notched connections and composite beams, 2D finite element models are built in ABAQUS in this study. The concrete portion is modelled with concrete damaged plasticity model while the timber portion is modelled with Hashin’s failure criteria. The effective bending stiffness and ultimate bending capacity of the composite beam under uniformly distributed load are obtained from the finite element models and are compared with the well-known Gamma method in Eurocode 5 and strut-and-tie model. Good agreement between finite element model in the elastic range and strut-and-tie model was achieved. However, due to the assumptions made in the Gamma method, it was found that this simplified design method is not capable of describing MTPC composite floors with discrete notched connections.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document