scholarly journals Correction to: Benchmarking the software packages to model and assess the seismic response of unreinforced masonry existing buildings through nonlinear static analyses

Author(s):  
Serena Cattari ◽  
Guido Magenes
Author(s):  
Serena Cattari ◽  
Guido Magenes

AbstractSeismic modelling of unreinforced masonry (URM) buildings is addressed worldwide according to different approaches, not only at research level, but also in the current engineering practice. The analysts have so many different possible choices in interpreting the response of the examined structure and in transferring them into the model for the assessment that the achievable results may turn out in a huge scattering, as also testified by various comparative studies already available in the literature. Within this context, this paper is an overview of a wide research activity addressed to the benchmarking of software packages for the modelling and seismic assessment through nonlinear static analyses of URM buildings. The activity conveyed the effort of many experts from various Italian universities and was funded by the Italian Department of Civil Protection within the context of the ReLUIS projects. The main objective of the research is the critical analysis and the systematic comparison of the results obtained by using several modelling approaches and software package tools on selected benchmark examples in order to provide a useful and qualified reference to the engineering and scientific community. To this aim, different benchmark examples—of increasing complexity, ranging from the single panel to 3D existing buildings—have been specifically designed. While other papers from the teams involved in the research project delve on the specific results achieved on each of these case studies, this paper illustrates an overview on such benchmark structures, their purpose and the standardized criteria adopted to compare the results. Moreover, the whole set of benchmark case-studies is made available in this paper through their detailed input data allowing to be replicated also by other researchers and analysts.


2018 ◽  
Vol 162 ◽  
pp. 04019 ◽  
Author(s):  
Sardasht Sardar ◽  
Ako Hama

Numerous recent studies have assessed the effect of P-Delta on the structures. This paper investigates the effect of P-Delta in seismic response of structures with different heights. For indicating the effect of P-Delta, nonlinear static analysis (pushover analysis) and nonlinear dynamic analysis (Time history analysis) were conducted by using finite element software. The results showing that the P-Delta has a significant impact on the structural behavior mainly on the peak amplitude of building when the height of the structures increased. In addition, comparison has been made between concrete and steel structure.


Author(s):  
Juan Jiménez-Pacheco ◽  
Ramón González-Drigo ◽  
Lluis G. Pujades Beneit ◽  
Alex H. Barbat ◽  
José Calderón-Brito

2020 ◽  
Vol 10 (23) ◽  
pp. 8357
Author(s):  
Ibrahim Oz ◽  
Sevket Murat Senel ◽  
Mehmet Palanci ◽  
Ali Kalkan

Reconnaissance studies performed after destructive earthquakes have shown that seismic performance of existing buildings, especially constructed on weak soils, is significantly low. This situation implies the negative effects of soil-structure interaction on the seismic performance of buildings. In order to investigate these effects, 40 existing buildings from Turkey were selected and nonlinear models were constructed by considering fixed-base and stiff, moderate and soft soil conditions. Buildings designed before and after Turkish Earthquake code of 1998 were grouped as old and new buildings, respectively. Different soil conditions classified according to shear wave velocities were reflected by using substructure method. Inelastic deformation demands were obtained by using nonlinear time history analysis and 20 real acceleration records selected from major earthquakes were used. The results have shown that soil-structure interaction, especially in soft soil cases, significantly affects the seismic response of old buildings. The most significant increase in drift demands occurred in first stories and the results corresponding to fixed-base, stiff and moderate cases are closer to each other with respect to soft soil cases. Distribution of results has indicated that effect of soil-structure interaction on the seismic performance of new buildings is limited with respect to old buildings.


2012 ◽  
Vol 28 (4) ◽  
pp. 1687-1709 ◽  
Author(s):  
Anna Brignola ◽  
Stefano Pampanin ◽  
Stefano Podestà

The seismic response of unreinforced masonry (URM) buildings, in both their as-built or retrofitted configuration, is strongly dependent on the characteristics of wooden floors and, in particular, on their in-plane stiffness and on the quality of wall-to-floor connections. As part of the development of alternative performance-based retrofit strategies for URM buildings, experimental research has been carried out by the authors at the University of Canterbury, in order to distinguish the different elements contributing to the whole diaphragm's stiffness. The results have been compared to the ones predicted through the use of international guidelines in order to highlight shortcomings and qualities and to propose a simplified formulation for the evaluation of the stiffness properties.


2016 ◽  
Vol 21 (6) ◽  
pp. 935-960 ◽  
Author(s):  
Yasuto Nakamura ◽  
Hossein Derakhshan ◽  
Guido Magenes ◽  
Michael C. Griffith

Sign in / Sign up

Export Citation Format

Share Document