Numerical assessment of a slender structure damaged during October 30, 2020, İzmir earthquake in Turkey

Author(s):  
Ali Demir ◽  
Taha Yasin Altıok
2021 ◽  
Vol 292 ◽  
pp. 123437
Author(s):  
Lívia Ávila de Oliveira ◽  
Maikson Luiz Passaia Tonatto ◽  
Gabriela Luiza Cota Coura ◽  
Rodrigo Teixeira Santos Freire ◽  
Túlio Hallak Panzera ◽  
...  

Author(s):  
Anil Kumar ◽  
Virendra Kumar ◽  
PMV Subbarao ◽  
Surendra K Yadav ◽  
Gaurav Singhal

The two-stage ejector has been suggested to replace the single-stage ejector geometrical configuration better to utilize the discharge flow’s redundant momentum to induce secondary flow. In this study, the one-dimensional gas dynamic constant rate of momentum change theory has been utilized to model a two-stage ejector along with a single-stage ejector. The proposed theory has been utilized in the computation of geometry and flow parameters of both the ejectors. The commercial computational fluid dynamics tool ANSYS-Fluent 14.0 has been utilized to predict performance and visualize the flow. The performance in terms of entrainment ratio has been compared under on- design and off-design conditions. The result shows that the two-stage ejector configuration has improved (≈57%) entrainment capacity than the single-stage ejector under the on-design condition.


Sign in / Sign up

Export Citation Format

Share Document