Finalizing host range determination of a weed biological control pathogen with best linear unbiased predictors and damage assessment

BioControl ◽  
2011 ◽  
Vol 57 (2) ◽  
pp. 235-246 ◽  
Author(s):  
Dana K. Berner ◽  
Craig A. Cavin
Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 907-912
Author(s):  
F. M. Eskandari ◽  
W. L. Bruckart ◽  
T. L. Widmer

Yellow starthistle (YST, Centaurea solstitialis) is a major weed pest of the western United States. Synchytrium solstitiale, a pathogen of YST, caused significant damage to symptomatic (versus asymptomatic) plants in a field study in France. Before it was evaluated as a candidate for biological control of YST in the United States, protocols for pathogen maintenance under greenhouse conditions were developed. Maintenance, increase, and host range determination protocols involved incubation at 10/15°C (night/day) with an 8-h photoperiod either of potted or exhumed (i.e., roots of 4-week-old plants grown in flasks of water) plants inoculated with galled leaf tissue, or potted plants in which inoculum was wrapped within healthy leaves by a plastic wrap. The leaf-wrap protocol, used during the host range determination, always resulted in disease of YST. Several safflower (Carthamus tinctorius) cultivars and other plants related to YST became diseased following this protocol, thus raising concern about host specificity. Development of disease on nontarget species precludes proposal of S. solstitiale for biological control of YST at this time.


2007 ◽  
Vol 71 (7) ◽  
pp. 1676-1682 ◽  
Author(s):  
Kiyoshi YUKAWA ◽  
Hisatoshi KAKU ◽  
Hiroshi TANAKA ◽  
Yasunori KOGA-BAN ◽  
Masao FUKUDA

2017 ◽  
Vol 141 (8) ◽  
pp. 665-668
Author(s):  
B. Quaglietti ◽  
P. Gautier ◽  
G. Groussier ◽  
A. Fleisch ◽  
P. Kreiter ◽  
...  

2009 ◽  
Vol 22 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Nalvo F. Almeida ◽  
Shuangchun Yan ◽  
Magdalen Lindeberg ◽  
David J. Studholme ◽  
David J. Schneider ◽  
...  

Diverse gene products including phytotoxins, pathogen-associated molecular patterns, and type III secreted effectors influence interactions between Pseudomonas syringae strains and plants, with additional yet uncharacterized factors likely contributing as well. Of particular interest are those interactions governing pathogen-host specificity. Comparative genomics of closely related pathogens with different host specificity represents an excellent approach for identification of genes contributing to host-range determination. A draft genome sequence of Pseudomonas syringae pv. tomato T1, which is pathogenic on tomato but nonpathogenic on Arabidopsis thaliana, was obtained for this purpose and compared with the genome of the closely related A. thaliana and tomato model pathogen P. syringae pv. tomato DC3000. Although the overall genetic content of each of the two genomes appears to be highly similar, the repertoire of effectors was found to diverge significantly. Several P. syringae pv. tomato T1 effectors absent from strain DC3000 were confirmed to be translocated into plants, with the well-studied effector AvrRpt2 representing a likely candidate for host-range determination. However, the presence of avrRpt2 was not found sufficient to explain A. thaliana resistance to P. syringae pv. tomato T1, suggesting that other effectors and possibly type III secretion system–independent factors also play a role in this interaction.


1990 ◽  
Vol 4 (3) ◽  
pp. 465-470 ◽  
Author(s):  
Gregory J. Weidemann ◽  
David O. Tebeest

The determination of host range is an important component in developing a plant pathogen for use as a bioherbicide. The safety of non-target economic and wild plants must be assured before experimental release and commercial use. In contrast to other methods of weed control, the genetic variability and genetic stability of both the weed and the biological control agent must be considered. Schemes to determine host range generally assume a close phylogenetic relationship between the weed host and its co-evolved pathogens. Therefore, testing generally is based on inoculation of genetically related plant species and progresses to more distantly related species until the host range is circumscribed. Several potential weaknesses in these schemes will be illustrated with examples using specific biological control agents. Future tests must place greater emphasis on testing taxa representing the full range of genetic diversity within the biogeographic area of intended use.


Sign in / Sign up

Export Citation Format

Share Document