Comparison of the host-handling behavior of Eretmocerus mundus on Bemisia tabaci B biotype, Q biotype and Trialeurodes vaporariorum

BioControl ◽  
2013 ◽  
Vol 58 (5) ◽  
pp. 615-623 ◽  
Author(s):  
Keitaro Sugiyama ◽  
Takashi Noda ◽  
Taro Maeda ◽  
Norihide Hinomoto
2016 ◽  
Vol 51 (5) ◽  
pp. 555-562 ◽  
Author(s):  
Paulo Roberto Queiroz ◽  
Erica Soares Martins ◽  
Nazaré Klautau ◽  
Luzia Lima ◽  
Lilian Praça ◽  
...  

Abstract: The objective of this work was to develop sequence-characterized amplified region (Scar) markers to identify the B, Q, and native Brazilian biotypes of the sweet potato whitefly [Bemisia tabaci (Hemiptera: Aleyrodidae)]. Random amplified polymorphic DNA (RAPD) amplification products, exclusive to the B and Brazilian biotypes, were selected after the analysis of 12,000 samples, in order to design a specific Scar primer set. The BT-B1 and BT-B3 Scar markers, used to detect the B biotype, produced PCR fragments of 850 and 582 bp, respectively. The BT-BR1 Scar marker, used to identify the Brazilian biotype, produced a PCR fragment of 700 bp. The Scar markers were tested against the Q biotype, and a flowchart was proposed to indicate the decision steps to use these primers, in order to correctly discriminate the biotypes. This procedure allowed to identify the biotypes that occur in field samples, such as the B biotype. The used set of primers allowed to discriminate the B, Q, and native Brazilian biotypes of B. tabaci. These primers can be successfully used to identify the B biotype of B. tabaci from field samples, showing only one specific biotype present in all cultures.


2008 ◽  
Vol 101 (1) ◽  
pp. 174-181 ◽  
Author(s):  
Nilima Prabhaker ◽  
S. J. Castle ◽  
L. Buckelew ◽  
Nick C. Toscano

2006 ◽  
Vol 3 (3) ◽  
pp. 189-194 ◽  
Author(s):  
Zang Lian-Sheng ◽  
Jiang Tong ◽  
Xu Jing ◽  
Liu Shu-Sheng ◽  
Zhang You-Jun

AbstractRandom amplified polymorphic DNA (RAPD) analyses were performed with random primer H16 for the B biotype and two non-B populations of Bemisia tabaci collected from Zhejiang (China). The specific sequence fragments containing 446, 390 and 1317 nucleotides were amplified for the B biotype, ZHJ-1, ZHJ-2 populations, respectively. The three specific fragments were cloned and sequenced, and three pairs of SCAR primers were designed according to the sequences determined. With improvement of the conditions of the polymerase chain reaction (PCR), the specific fragments of B biotype, ZHJ-1 and ZHJ-2 populations, namely 439, 366 and 1238 nucleotides, respectively, were amplified with the sequence characterized amplified region (SCAR) primer of the corresponding population, while specific fragments of the other populations of B. tabaci or Trialeurodes vaporariorum could not be amplified.


2010 ◽  
Vol 100 (5) ◽  
pp. 581-590 ◽  
Author(s):  
M. Elbaz ◽  
N. Lahav ◽  
S. Morin

AbstractThe degree of reproductive isolation between the B and Q biotypes of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is currently not clear. Laboratory experiments have shown that the two biotypes are capable of producing viable F1 hybrids but that these females are sterile as their F2 generation failed to develop, indicating, most likely, a post-zygotic reproductive barrier. Here, we confirm, by molecular and ecological tools, that the B and Q biotypes of Israel are genetically isolated and provide two independent lines of evidence that support the existence of a pre-zygotic reproductive barrier between them. Firstly, monitoring of mating behaviors in homogeneous and heterogeneous couples indicated no copulation events in heterogeneous couples compared to ∼50% in homogeneous B and Q couples. Secondly, we could not detect the presence of sperm in the spermathecae of females from heterogeneous couples, compared to 50% detection in intra-B biotype crosses and 15% detection in intra-Q biotype crosses. The existence of pre-zygotic reproductive barriers in Israeli B and Q colonies may indicate a reinforcement process in which mating discrimination is strengthened between sympatric taxa that were formerly allopatric, to avoid maladaptive hybridization. As the two biotypes continued to perform all courtship stages prior to copulation, we also conducted mixed cultures experiments in order to test the reproductive consequences of inter-biotype courtship attempts. In mixed cultures, a significant reduction in female fecundity was observed for the Q biotype but not for the B biotype, suggesting an asymmetric reproductive interference effect in favour of the B biotype. The long-term outcome of this effect is yet to be determined since additional environmental forces may reduce the probability of demographic displacement of one biotype by the other in overlapping niches.


2021 ◽  
Vol 25 (02) ◽  
pp. 460-468
Author(s):  
Muhammad Farooq

The sucking pests, especially whitefly, have damaged various fields and fruit crops across the globe. The study of life-history is of prime importance to monitor the dynamics for preference of a species to its host. This study tested the prevalence and preference of a whitefly species, Bemisia tabaci (Gennadius) B biotype (Hemiptera: Aleyrodidae) on tomato, cotton, pepper, and okra as hosts using age-stage two-sex life table. Results revealed the highest pre-adult developmental duration, survival rate, and fecundity on tomato while the lowest values on okra. Population parameters such as the net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) were demonstrated longer on cotton and tomato compared to much lower R0, r, and λ on pepper and okra. Okra responded significantly differently in the case of the mean generation time, T among all tested genotypes. These findings suggest the possibility of summer vegetables as more favorable hosts for B. tabaci. © 2021 Friends Science Publishers


2007 ◽  
Vol 97 (4) ◽  
pp. 407-413 ◽  
Author(s):  
E. Chiel ◽  
Y. Gottlieb ◽  
E. Zchori-Fein ◽  
N. Mozes-Daube ◽  
N. Katzir ◽  
...  

AbstractThe sweet potato whitefly, Bemisia tabaci, harbors Portiera aleyrodidarum, an obligatory symbiotic bacterium, as well as several secondary symbionts including Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium and Fritschea, the function of which is unknown. Bemisia tabaci is a species complex composed of numerous biotypes, which may differ from each other both genetically and biologically. Only the B and Q biotypes have been reported from Israel. Secondary symbiont infection frequencies of Israeli laboratory and field populations of B. tabaci from various host plants were determined by PCR, in order to test for correlation between bacterial composition to biotype and host plant. Hamiltonella was detected only in populations of the B biotype, while Wolbachia and Arsenophonus were found only in the Q biotype (33% and 87% infection, respectively). Rickettsia was abundant in both biotypes. Cardinium and Fritschea were not found in any of the populations. No differences in secondary symbionts were found among host plants within the B biotype; but within the Q biotype, all whiteflies collected from sage harboured both Rickettsia and Arsenophonus, an infection frequency which was significantly higher than those found in association with all other host plants. The association found between whitefly biotypes and secondary symbionts suggests a possible contribution of these bacteria to host characteristics such as insecticide resistance, host range, virus transmission and speciation.


Sign in / Sign up

Export Citation Format

Share Document