scar marker
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 43)

H-INDEX

23
(FIVE YEARS 3)

Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 775
Author(s):  
Carla Maleita ◽  
Joana M. S. Cardoso ◽  
Leidy Rusinque ◽  
Ivânia Esteves ◽  
Isabel Abrantes

Meloidogyne luci has been identified in various countries around the world parasitizing economically important crops and, due to its potential to cause serious damage to agriculture, was included in the European and Mediterranean Plant Protection Organization Alert List in 2017. This species shares morphological and molecular similarities with M. ethiopica and M. inornata, and a M. ethiopica group was established. Although specific primers for DNA amplification of species belonging to the M. ethiopica group have been developed previously, primers were not species-specific and molecular markers for the specific detection of M. luci are still needed. The objective of this study was to develop a SCAR marker, for detection of M. luci and discrimination from other Meloidogyne spp., based on the intraspecific variability found in RAPD markers. RAPD screening of M. luci and M. ethiopica genome was used for the identification of a specific amplification product on M. luci, which was cloned, sequenced and converted into a SCAR marker. The specificity of the designed primers (Mlf/r) was tested and produced a fragment (771 bp) for all nine M. luci isolates with no amplification for the other nine Meloidogyne spp., including M. ethiopica and M. inornata. Additionally, the proper amplification of the M. luci SCAR-marker was also successful with DNA from galls of M. luci infected tomato roots. The results obtained in this study reveal that the specific molecular detection of M. luci was achieved and the developed methodology can be used for routine diagnosis purposes, which are essential to monitor M. luci distribution and spread, in order to implement future effective and integrated nematode pest management programs.


2021 ◽  
Author(s):  
Palraju Murali ◽  
Karuppiah Hilda ◽  
Muthusamy Ramakrishnan ◽  
Arumugam Ganesh ◽  
Sreeramulu Bhuvaragavan ◽  
...  

Abstract The brinjal shoot and fruit borer, Leucinodes orbonalis is a destructive pest of Solanum melongena. The control of L. orbonalis with extensive application of synthetic chemical insecticides resulted in the development of resistance with known genetic heterogeneity among populations. Understanding the genetic diversity of their populations is important in developing strategies for their management. The present investigation was performed to characterize populations of L. orbonalis for their genetic diversity in the entire region of Tamil Nadu, South India using random amplified polymorphic DNA (RAPD) primers as a tool of the molecular marker. Among sixty random 10-mer primers, only ten primers generated reproducible and scorable banding profile. Among the ten different random primers, the primers namely OPG 7, OPG 8, OPS 2 and OPS 7 generated the highest genetic variation with over 80% genetic polymorphism. Phylogram analysis produced 18 clusters with 8 major and 10 minor clusters. Cluster analysis, statistical fitness, population structure and analysis of molecular variance confirmed the significant genetic variation among different populations. A trait specific marker obtained through RAPD was cloned, sequenced and used to develop a stable diagnostic SCAR marker for DNA fingerprinting to distinguish the populations. Amplification of this locus in the samples of 20 different populations indicated recognition of the trait for pesticide resistance in 12 populations. The results suggest that the biochemical nature of host plant varieties of this insect pest and variation in the application of different insecticides are essential contributing factors for the genotypic variations observed among populations of L. orbonalis.


2021 ◽  
Author(s):  
Palraju Murali ◽  
Karuppiah Hilda ◽  
Muthusamy Ramakrishnan ◽  
Arumugam Ganesh ◽  
Sreeramulu Bhuvaragavan ◽  
...  

Abstract The brinjal shoot and fruit borer, Leucinodes orbonalis is a destructive pest of Solanum melongena. The control of L. orbonalis with extensive application of synthetic chemical insecticides resulted in the development of resistance with known genetic heterogeneity among populations. Understanding the genetic diversity of their populations is important in developing strategies for their management. The present investigation was performed to characterize populations of L. orbonalis for their genetic diversity in the entire region of Tamil Nadu, South India using random amplified polymorphic DNA (RAPD) primers as a tool of the molecular marker. Among sixty random 10-mer primers, only ten primers generated reproducible and scorable banding profile. Among the ten different random primers, the primers namely OPG 7, OPG 8, OPS 2 and OPS 7 generated the highest genetic variation with over 80% genetic polymorphism. Phylogram analysis produced 18 clusters with 8 major and 10 minor clusters. Cluster analysis, statistical fitness, population structure and analysis of molecular variance confirmed the significant genetic variation among different populations. A trait specific marker obtained through RAPD was cloned, sequenced and used to develop a stable diagnostic SCAR marker for DNA fingerprinting to distinguish the populations. Amplification of this locus in the samples of 20 different populations indicated recognition of the trait for pesticide resistance in 12 populations. The results suggest that the biochemical nature of host plant varieties of this insect pest and variation in the application of different insecticides are essential contributing factors for the genotypic variations observed among populations of L. orbonalis.


2021 ◽  
Vol 25 (06) ◽  
pp. 1272-1280
Author(s):  
Quanqing Deng

Sugarcane smut caused by Sporisorium scitanmineumis the most severe sugarcane disease that causes major economic losses in sugarcane production in China, and disease resistance breeding is an important way of preventing and controlling this disease. In this study, BC3F1lines derived from the cross between YC 73-226 and YCE 06-111 were used to generate sugarcane smut-resistant and -susceptible gene pools using bulked segregant analysis (BSA). Eighty-nine random primers of start codon targeted (SCoT) polymorphisms were screened, whereas only primer SCoT44 could stably amplify the specific fragment (HE-Ss44) in the resistant pool. Then, several primer pairs of sequence characterized amplified regions (SCARs) were designed based on the sequence alignment of HE-Ss44 (920 bp), which was recovered after purification, and only one pair of SCAR primers (Ss44-F2/R2, forward: 5'-GGCGGGCACCGTCGAGTCCACAT-3'; reverse: 5'-CCGTCCGTCGG TCTCGTCCTTACG-3') could stably amplify a 400-bp specific band in resistant gene pool and its individuals. A validation test of SCAR marker Ss44-F2/R2 was performed using 34 sugarcane cultivars with known smut resistance, which revealed a selection accuracy of 82.35% between marker detection and known smut resistance. Moreover, Pearson’s correlation analysis also showed that the SCAR marker Ss44-F2/R2 was significantly correlated (r= 0.583, P= 0.0003 < 0.01) with the smut resistance trait in sugarcane. In addition, the nucleotide sequence of HE-Ss44 linked with smut-resistancewas not aligned to the homologous sequence in GenBank (NCBI), and the accession number was MG740763. The SCAR marker Ss44-F2/R2 developed in this study can be used for the rapid detection of smut resistance in sugarcane and may be utilized as reference for the improvement of sugarcane smut resistance based on molecular marker-assisted selection.© 2021 Friends Science Publishers


2021 ◽  
Vol 12 ◽  
Author(s):  
Kaixin Zheng ◽  
Yuchen Cai ◽  
Weijie Chen ◽  
Yadi Gao ◽  
Jingjing Jin ◽  
...  

The stems of Dendrobium officinale have been used as a rare and valuable Chinese tonic medicine, known as “Tiepi Fengdou”, since the Qing dynasty. Because of the increased market demand and continued exploitation of this plant, the reserves of wild D. officinale resources have been depleted, and D. officinale products on the market are being increasingly adulterated. Such changes have strongly affected the sustainable utilization of this valuable medicinal plant resource and the development of related industries. In this study, a species-specific DNA marker was developed for the rapid and accurate authentication of D. officinale. In total, 36 start codon-targeted (SCoT) polymorphism primers were screened in 36 definite Dendrobium species, and a distinct species-specific DNA amplicon (SCoT13-215) for D. officinale was obtained. After the sequence was cloned and sequenced, a sequence-characterized amplified region marker was developed (named SHF/SHR) and validated through PCR amplification of all 38 Dendrobium samples. The marker’s specificity for D. officinale was confirmed through the consistent amplification of a clear 197-bp band. This SCAR marker can be used to rapidly, effectively, and reliably identify D. officinale among various Dendrobium species and may play an important role in ensuring the quality of medicinal preparations and protecting the germplasm of this important medicinal species.


2021 ◽  
pp. 35-37
Author(s):  
А.С. Ерошевская ◽  
А.А. Егорова ◽  
Н.А. Милюкова ◽  
А.С. Пырсиков

В статье представлены результаты молекулярно-генетического анализа F1 гибридов томата разных товарных групп на наличие аллелей гена устойчивости Cf-9 к кладоспориозу. Молекулярно-генетический анализ проводили в лаборатории маркерной и геномной селекции растений ФГБНУ ВНИИСБ в 2019 году. В качестве объекта исследования использованы 16 F1 гибридов томата, в том числе 10 крупноплодных, 1 кистевой, 1 коктейль и 4 черри. Повторность исследований двухкратная (одна повторность – одно растение). Для идентификации аллелей гена Cf-9 устойчивости к кладоспориозу применяли SCAR-маркер со следующими праймерами: CS5 (TTTCCAACTTACAATCCCTTC), DS1 (GAGAGCTCAACCTTTACGAA), CS1 (GCCGTTCAAGTTGGGTGTT). Реакционная смесь для ПЦР объемом 25 мкл содержала 50–100 нг ДНК, 2,5 мМ dNTP, 3 мМ MgSO4, 10 пМ каждого праймера, 2 ед. Taq-полимеразы (ООО «НПФ Синтол») и 2х стандартный ПЦР буфер. Реакцию проводили в амплификаторе Termal Cycler Bio-Rad T 100 по программе 95 °C – 5 мин, 35 циклов 95 °C – 20 с, 60 °C – 30 с, 72 °C – 30 с, финальная элонгация в течение 5 мин при 72 °C. Визуализацию результатов ПЦР проводили путем электрофореза в 1,7%-ном агарозном геле с 1х ТАЕ буфером, результаты анализировали с помощью системы Gel Doc 2000 (Bio-Rad Laboratories, Inc., США). При идентификации гена устойчивости Cf-9 к кладоспориозу у изучаемых гибридов томата F1 были выявлены фрагменты размером 378 п. н. (аллель Cf-9) и 507 п. н. (аллель 9DC), что указывает на их устойчивость к этому заболеванию. Согласно результатам исследований, из 16 F1 гибридов томата 13 устойчивы к кладоспориозу, причем у 12 из них выявлено наличие только аллелей Cf-9, 1 гибрид имеет в генотипе оба аллеля устойчивости – Cf-9 и 9DС. Доминантные гомозиготы по гену Cf-9 будут использованы в селекционных программах Агрофирмы «Поиск» для создания линий-доноров устойчивости к кладоспориозу. The article presents the results of molecular genetic analysis of F1 tomato hybrids of different commodity groups for presence of Cf-9 gene alleles of resistance to leaf mold. The molecular genetic analysis was carried out in the laboratory of marker and genomic plant breeding of FSBSI VNIISB in 2019. 16 F1 tomato hybrids were used as the object of the study, including 10 large-fruited, 1 brush, 1 cocktail and 4 cherry. The repetition of studies is two-fold (one frequency – one plant). To identify alleles of the Cf-9gene for cladosporiosis resistance, a SCAR marker with the following primers was used: CS5 (TTTCCAACTTACAATCCCTTC), DS1 (GAGAGCTCAACCTTTACGAA), CS1 (GCCGTTCAAGTTGGGTGTT). The reaction mixture for PCR with a volume of 25 µl contained 50–100 ng of DNA, 2.5 mM dNTP, 3 mM MgSO4, 10 pM of each primer, 2 units. Taq-polymerase (LLC NPF Synthol) and 2x standard PCR buffer. The reaction was carried out in the Termal Cycler Bio-Rad T 100 amplifier according to the program 95 °C – 5 min, 35 cycles 95 °C – 20 s, 60 °C – 30 s, 72 °C – 30 s, the final elongation for 5 minutes at 72 °C. The PCR results were visualized by electrophoresis in a 1.7% agarose gel with 1x TAE buffer, the results were analyzed using the Gel Doc 2000 system (Bio-Rad Laboratories, Inc., USA). The identification of the Cf-9resistance gene to cladosporiosis in the studied tomato F1 hybrids revealed fragments of 378 bp (Cf-9 allele) and 507 bp (9DC allele), which indicates their resistance to this disease. According to the research results, 13 out of 16 tomato F1 hybrids are resistant to cladosporiosis, and 12 of them have only Cf-9 alleles, 1 hybrid has both Cf-9 and 9DC resistance alleles in the genotype. Dominant homozygotes for the Cf-9 gene will be used in breeding programs of Poisk Agrofirm to create donor lines for resistance to cladosporiosis.


Sign in / Sign up

Export Citation Format

Share Document