Ribosomal ITS sequence-directed selection for endophytic Myrothecium strains antagonistic to Ralstonia solanacearum to control patchouli bacterial wilt

BioControl ◽  
2022 ◽  
Author(s):  
Wenguang Shi ◽  
Jiaqi Li ◽  
Huaxiong Yao ◽  
Jianbin Li ◽  
Meiqi Chen ◽  
...  
2001 ◽  
Vol 183 (12) ◽  
pp. 3597-3605 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Huayu Huang ◽  
Caitilyn Allen

ABSTRACT Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found thatR. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lackingfliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphAcassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.


2017 ◽  
Vol 124 (5) ◽  
pp. 467-472 ◽  
Author(s):  
Kamal A. M. Abo-Elyousr ◽  
Mohamed E. A. Seleim ◽  
Rafeek M. El-Sharkawy ◽  
Hadel M. M. Khalil Bagy

2014 ◽  
Vol 8 (12) ◽  
pp. 1277-1281 ◽  
Author(s):  
Sagar Vinay ◽  
Singh Gurjar Malkhan ◽  
Arjunan Jeevalatha ◽  
R. Bakade Rahul ◽  
K. Chakrabarti S. ◽  
...  

Author(s):  
Narasimhamurthy Konappa ◽  
Soumya Krishnamurthy ◽  
Chandra Nayaka Siddaiah ◽  
Niranjana Siddapura Ramachandrappa ◽  
Srinivas Chowdappa

Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 578-578 ◽  
Author(s):  
R. Sikirou ◽  
M.-E. E. A. Dossoumou ◽  
B. Zocli ◽  
V. Afari-Sefa ◽  
J. Honfoga ◽  
...  

2015 ◽  
Vol 17 (06) ◽  
pp. 1101-1109 ◽  
Author(s):  
Peng Cheng ◽  
Wei Song ◽  
Xiao Gong ◽  
Yisong Liu ◽  
Weiguo Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document