Increase in the production of β-carotene in recombinant Escherichia coli cultured in a chemically defined medium supplemented with amino acids

2012 ◽  
Vol 35 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Hyun-Koo Nam ◽  
Jin-Geun Choi ◽  
Jae-Hee Lee ◽  
Seon-Won Kim ◽  
Deok-Kun Oh
2020 ◽  
Vol 47 (12) ◽  
pp. 1117-1132
Author(s):  
Katharina Novak ◽  
Juliane Baar ◽  
Philipp Freitag ◽  
Stefan Pflügl

AbstractThe aim of this study was to establish isobutanol production on chemically defined medium in Escherichia coli. By individually expressing each gene of the pathway, we constructed a plasmid library for isobutanol production. Strain screening on chemically defined medium showed successful production in the robust E. coli W strain, and expression vector IB 4 was selected as the most promising construct due to its high isobutanol yields and efficient substrate uptake. The investigation of different aeration strategies in combination with strain improvement and the implementation of a pulsed fed-batch were key for the development of an efficient production process. E. coli W ΔldhA ΔadhE Δpta ΔfrdA enabled aerobic isobutanol production at 38% of the theoretical maximum. Use of cheese whey as raw material resulted in longer process stability, which allowed production of 20 g l−1 isobutanol. Demonstrating isobutanol production on both chemically defined medium and a residual waste stream, this study provides valuable information for further development of industrially relevant isobutanol production processes.


1950 ◽  
Vol 28c (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. H. Wallace ◽  
A. G. Lochhead

A study was made of the more specific amino acid requirements of bacteria from the rhizospheres of clover, flax, and wheat plants for which a chemically defined medium containing 23 amino acids provided essentials for maximum growth. Of seven groups of amino acids, the sulphur-containing group (cysteine, methionine, and taurine) was found to be of special significance, the omission of this group resulting in a pronounced decrease in the percentage of organisms able to develop. Further study of organisms dependent upon this group of amino acids for growth showed methionine to be by far the most essential compound. While evident for bacteria from the rhizosphere of all three crops, the effect was more pronounced in the case of clover than with flax or wheat.


1966 ◽  
Vol 12 (4) ◽  
pp. 641-652 ◽  
Author(s):  
D. H. Evans

Growth of Actinobacillus mallei was inhibited by kanamycin; the minimal inhibitory concentration in a complex medium was 1.25 μg/ml and in a chemically defined medium 5 μg/ml. Higher concentrations of kanamycin had a pronounced bactericidal effect. When a suspension of cells containing 5 × 107 viable cells/ml was incubated in the presence of 20 μg/ml of kanamycin in a chemically defined medium, complete sterilization resulted after 6 hours. Cells irradiated with ultraviolet light were grown in complex or supplemental minimal media, washed, and exposed to 20 μg/ml of kanamycin in minimal medium for 4 hours. Auxotrophic mutants with requirements for tryptophane, phenylalanine, proline, and uracil were detected among the survivors of kanamycin treatment. After treatment with 0.01 M nitrous acid and growth in minimal medium supplemented with amino acids, cells were washed and then exposed to kanamycin in minimal medium. The proportion of autotrophs among the survivors varied from 1.3 to 75%. Mutants with requirements for each of the following amino acids were identified: methionine, methionine or cystine, arginine, leucine, tryptophane, histidme, and proline, with methionine-requiring mutants predominating. Exposure of mixtures of prototrophs and uracil-dependent and methionine-dependent auxotrophs to 20 μg/ml of kanamycin for 4 hours resulted in approximately 700- and 300-fold increases, respectively, in the ratio of auxotrophs to prototrophs.


Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 1987-1994 ◽  
Author(s):  
Odile Juille ◽  
Dominique Le Bars ◽  
Vincent Juillard

Peptide transport is a crucial step in the growth of Streptococcus thermophilus in protein- or peptide-containing media. The objective of the present work was to determine the specificity of peptide utilization by this widely used lactic acid bacterium. To reach that goal, complementary approaches were employed. The capability of a proteinase-negative S. thermophilus strain to grow in a chemically defined medium containing a mixture of peptides isolated from milk as the source of amino acids was analysed. Peptides were separated into three size classes by ultrafiltration. The strain was able to use peptides up to 3·5 kDa during growth, as revealed by liquid chromatography and mass spectrometry analyses. The same strain was grown in chemically defined medium containing a tryptic digest of casein, and the respective time-course consumption of the peptides during growth was estimated. The ability to consume large peptides (up to 23 residues) was confirmed, as long as they are cationic and hydrophobic. These results were confirmed by peptide transport studies. Extension of the study to 11 other strains revealed that they all shared these preferences.


2008 ◽  
Vol 23 (3) ◽  
pp. 599-605 ◽  
Author(s):  
Sang-Hwal Yoon ◽  
Hye-Min Park ◽  
Ju-Eun Kim ◽  
Sook-Hee Lee ◽  
Myung-Suk Choi ◽  
...  

2012 ◽  
Vol 17 (6) ◽  
pp. 1196-1204 ◽  
Author(s):  
Anh Do Quynh Nguyen ◽  
Seon-Won Kim ◽  
Sung Bae Kim ◽  
Yang-Gon Seo ◽  
In-Young Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document