minimal media
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259067
Author(s):  
Chunghwan Ro ◽  
Michael Cashel ◽  
Llorenç Fernández-Coll

The cAMP-CRP regulon coordinates transcription regulation of several energy-related genes, the lac operon among them. Lactose, or IPTG, induces the lac operon expression by binding to the LacI repressor, and releasing it from the promoter sequence. At the same time, the expression of the lac operon requires the presence of the CRP-cAMP complex, which promotes the binding of the RNA polymerase to the promoter region. The modified nucleotide cAMP accumulates in the absence of glucose and binds to the CRP protein, but its ability to bind to DNA can be impaired by lysine-acetylation of CRP. Here we add another layer of control, as acetylation of CRP seems to be modified by ppGpp. In cells grown in glycerol minimal media, ppGpp seems to repress the expression of lacZ, where ΔrelA mutants show higher expression of lacZ than in WT. These differences between the WT and ΔrelA strains seem to depend on the levels of acetylated CRP. During the growth in minimal media supplemented with glycerol, ppGpp promotes the acetylation of CRP by the Nε-lysine acetyltransferases YfiQ. Moreover, the expression of the different genes involved in the production and degradation of Acetyl-phosphate (ackA-pta) and the enzymatic acetylation of proteins (yfiQ) are stimulated by the presence of ppGpp, depending on the growth conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
James S. Horton ◽  
Louise M. Flanagan ◽  
Robert W. Jackson ◽  
Nicholas K. Priest ◽  
Tiffany B. Taylor

AbstractMutational hotspots can determine evolutionary outcomes and make evolution repeatable. Hotspots are products of multiple evolutionary forces including mutation rate heterogeneity, but this variable is often hard to identify. In this work, we reveal that a near-deterministic genetic hotspot can be built and broken by a handful of silent mutations. We observe this when studying homologous immotile variants of the bacteria Pseudomonas fluorescens, AR2 and Pf0-2x. AR2 resurrects motility through highly repeatable de novo mutation of the same nucleotide in >95% lines in minimal media (ntrB A289C). Pf0-2x, however, evolves via a number of mutations meaning the two strains diverge significantly during adaptation. We determine that this evolutionary disparity is owed to just 6 synonymous variations within the ntrB locus, which we demonstrate by swapping the sites and observing that we are able to both break (>95% to 0%) and build (0% to 80%) a deterministic mutational hotspot. Our work reveals a key role for silent genetic variation in determining adaptive outcomes.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 909
Author(s):  
Wanliang Shi

Susceptibility testing of tuberculosis (TB) drugs on Mycobacterium tuberculosis is essential for the rapid detection of strains resistant to the drugs, providing the patient with effective treatment, and preventing the spread of drug-resistant TB strains. Pyrazinamide (PZA) is one of the first-line agents used for the treatment of TB. However, current phenotypic PZA susceptibility testing is unreliable due to its performance in acidic pH conditions. The aims of this study were to develop minimal media to determine the activity of PZA at a neutral pH at 37 °C to avoid problems caused by an acidic pH, which is currently used in PZA susceptibility tests, and to identify PZA-resistant M. tuberculosis in media with reproducibility and accuracy. Different minimal media were used to determine the activity of PZA using the broth microdilution method with M. tuberculosis H37Ra as the reference strain. The PZA-S1 minimal medium was proposed as the most suitable medium. PZA inhibited the growth of M. tuberculosis in PZA-S1 at a neutral pH of 6.8, which is the optimal pH for M. tuberculosis growth. Moreover, PZA showed activity at a neutral pH on a PZA-S1 agar plate when using the disk diffusion method. PZA-resistant M. tuberculosis could be identified at a neutral pH in PZA-S1 minimal medium. This study establishes valuable information regarding the testing of PZA’s susceptibility in relation to M. tuberculosis at a neutral pH of 6.8 with reliability and accuracy in clinical settings.


2021 ◽  
Vol 24 (3) ◽  
pp. E502-E505
Author(s):  
Yuehu Han ◽  
Jie Su ◽  
Zhifa Wang ◽  
Dongming Wei ◽  
Yanjie Guo ◽  
...  

Objective: To investigate the feasibility and effect of minimal media lower hemisternotomy for cardiac surgery under cardiopulmonary bypass (CPB) in infant congenital heart disease. Methods: In our hospital from May 2019 to October 2019, 170 infants with congenital heart disease underwent surgical treatment (median age 6.6 months; weight 6.0 kg). They were divided into 2 groups: those with conventional chest median incision and those with minimal sternotomy. Minimal lower hemisternotomy began from the third intercostal level and ended 0.5 cm above the xiphoid, just enough to insert a small sternal distractor. Results: There was no significant difference between the 2 groups in CPB time. The operation time of small incision group was slightly longer (P < .05). There was no difference in prognosis between the 2 groups, but the wound length of the small incision group was significantly reduced (4.0 ± 0.5 versus 7.8 ± 0.8 cm, P < .05). Time of intensive care unit and hospital stay was shorter among hemisternotomy patients at a statistically significant level (P < .05). Conclusion: Minimal media lower hemisternotomy with the basic advantages of the sternal incision can expose the various parts of the heart, which meets most cardiac exploration and surgical operation needs, and the incision may still be extended if necessary. Lower hemisternotomy appears to be a safe, effective, and versatile alternative for many surgical interventions in infants with congenital heart disease.


Author(s):  
Yogesh Suryawanshi ◽  
Gaganjyot Kaur ◽  
Ajay Mandavkar ◽  
Bhupesh Jena

Biosurfactants belong to the amphiphilic molecules category and are formed by a range of microorganisms. Similar to chemical surfactants, properties of Biosurfactants that make them unique include minimizing the surface and interfacial tensions. Biosurfactants also have Critical Micelle Concentration (CMC) in organic and aqueous solutions. Recent studies confirm the toxic nature of chemically synthesized surfactants and the advantages of biosurfactants prove their potential than commercially artificial counterparts. Rhamnolipids are well-characterized and promising compounds among other biosurfactants. In this study, biosurfactants producing microorganisms were isolated from the soil. The isolated microorganism was identified with different biochemical tests and found to be Pseudomonas aeruginosa. 16s rRNA locus was utilized for DNA bar-coding. Production of biosurfactants was done at shake flask level and 5L lab-scale fermenter using minimal media optimized for high yield. Cell-free supernatant was purified using LLE and biosurfactants characterization was performed on HPTLC and HPLC using standard Rhamnolipids. The isolated biosurfactants were tested to remove common stains and were found effective. This shows the potential of biosurfactants as a Laundry detergent.


2021 ◽  
Author(s):  
Floriana Postelnik

In this work, a lab-scale microcosm was designed and used to simulate a porous groundwater aquifer. A minimal media acted as the non-selective pressure for plasmid transfer, while a minimal media with gentamicin acted as the selective pressure. PCR, plate counts and confocal laser scanning microscopy were used to monitor transconjugant and donor persistence in the microcosm. The donor was identified through


2021 ◽  
Author(s):  
Floriana Postelnik

In this work, a lab-scale microcosm was designed and used to simulate a porous groundwater aquifer. A minimal media acted as the non-selective pressure for plasmid transfer, while a minimal media with gentamicin acted as the selective pressure. PCR, plate counts and confocal laser scanning microscopy were used to monitor transconjugant and donor persistence in the microcosm. The donor was identified through


Author(s):  
Pilendra Kumar Thakre ◽  
Rakesh Kumar Sahu ◽  
Raghuvir Singh Tomar

Histone residues play an essential role in the regulation of various biological processes. In the present study, we have utilized the H3/H4 histone mutant library to probe functional aspects of histone residues in amino acid biosynthesis. We found that histone residue H3R72 plays a crucial role in the regulation of isoleucine biosynthesis. Substitution of arginine residue (H3R72) of histone H3 to alanine (H3R72A) renders yeast cells unable to grow in the minimal media. Histone mutant H3R72A requires the external supplementation of either isoleucine, serine, or threonine for the growth in minimal media. We also observed that H3R72 residue and leucine amino acid in synthetic complete media might play a crucial role in determining the intake of isoleucine and threonine in yeast. Further, gene deletion analysis of ILV1 and CHA1 in H3R72A mutant confirmed that isoleucine is the sole requirement for growth in minimal medium. Altogether, we have identified that histone H3R72 residue may be crucial for yeast growth in the minimal medium by regulating isoleucine biosynthesis through the Ilv1 enzyme in budding yeast Saccharomyces cerevisiae.


Cellulose ◽  
2021 ◽  
Vol 28 (5) ◽  
pp. 2649-2673
Author(s):  
Gabriela Sperotto ◽  
Larissa Gabrieli Stasiak ◽  
João Pedro Maximino Gongora Godoi ◽  
Naiana Cristine Gabiatti ◽  
Samara Silva De Souza

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


Sign in / Sign up

Export Citation Format

Share Document