chemically defined medium
Recently Published Documents


TOTAL DOCUMENTS

690
(FIVE YEARS 24)

H-INDEX

57
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2743
Author(s):  
Barbara Świerczek-Lasek ◽  
Damian Dudka ◽  
Damian Bauer ◽  
Tomasz Czajkowski ◽  
Katarzyna Ilach ◽  
...  

Pluripotent stem cells (PSCs) are characterized by the ability to self-renew as well as undergo multidirectional differentiation. Culture conditions have a pivotal influence on differentiation pattern. In the current study, we compared the fate of mouse PSCs using two culture media: (1) chemically defined, free of animal reagents, and (2) standard one relying on the serum supplementation. Moreover, we assessed the influence of selected regulators (WNTs, SHH) on PSC differentiation. We showed that the differentiation pattern of PSCs cultured in both systems differed significantly: cells cultured in chemically defined medium preferentially underwent ectodermal conversion while their endo- and mesodermal differentiation was limited, contrary to cells cultured in serum-supplemented medium. More efficient ectodermal differentiation of PSCs cultured in chemically defined medium correlated with higher activity of SHH pathway while endodermal and mesodermal conversion of cells cultured in serum-supplemented medium with higher activity of WNT/JNK pathway. However, inhibition of either canonical or noncanonical WNT pathway resulted in the limitation of endo- and mesodermal conversion of PSCs. In addition, blocking WNT secretion led to the inhibition of PSC mesodermal differentiation, confirming the pivotal role of WNT signaling in this process. In contrast, SHH turned out to be an inducer of PSC ectodermal, not mesodermal differentiation.


2021 ◽  
Vol 50 (8) ◽  
pp. 2355-2365
Author(s):  
Muhammad Najib Fathi Bin Hassan ◽  
Zheng Yie Yap ◽  
Yee Loong Tang ◽  
Min Hwei Ng ◽  
Jia Xian Law

Dermal fibroblasts have been used clinically to promote wound healing and to reduce wrinkles. Most of the time, fetal bovine serum (FBS) is used for the expansion of fibroblasts. In addition, chemically defined medium can also be used for fibroblast expansion. Nonetheless, both FBS and chemically defined medium are not ideal to culture cells that will be used clinically as FBS has the risk of pathogen transmission and induction of xenogeneic immune response whilst chemically defined medium is extremely expensive. In this study, we examine the potential of using human platelet lysate (hPL) prepared from expired platelet concentrates to culture human dermal fibroblasts. For the experiments, fibroblasts were cultured with 5 and 10% hPL, with 10% FBS as the control group to compare the cell morphology, viability, growth rate, extracellular matrix gene expression and wound healing. Results showed that fibroblasts cultured with hPL were more elongated and smaller in size. The cell viability was higher than 90% for all groups. Expansion with 10% hPL significantly shorten the population doubling time compared to the 5% hPL and 10% FBS groups. However, fibroblasts cultured with hPL have lower expression of type I collagen, type III collagen and fibronection as well as slower wound closure. In summary, hPL has the potential to be used as a serum substitute for FBS to expand fibroblasts as it significantly increases the cell proliferation. However, further studies are required to determine if the changes in the ECM gene expression and migration of the hPL-expanded fibroblasts will affect the efficacy of the cells in promoting in vivo wound healing.


2021 ◽  
Author(s):  
Kevin Aumiller ◽  
Eric Stevens ◽  
Robert Scheffler ◽  
Zehra Tuzun Guvener ◽  
Emily Tung ◽  
...  

Lactobacilli and acetobacters are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of Drosophila melanogaster fruit flies. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growths. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would greatly facilitate identification of the precise metabolic interactions between these two groups of bacteria. While numerous such media have been developed that support specific strains of lactobacilli and acetobacters, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous Lactobacillus CDM, by modifying the nutrient abundances to improve growth of both groups of bacteria. We further simplified the medium by substituting casamino acids for individual amino acids and the standard Wolfe's vitamins and mineral stocks for individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. The new CDM and variations of it support robust growth of lactobacilli and acetobacters. We provide the composition and an example of its use to measure nutritional interactions.


Author(s):  
Se-Woong Park ◽  
Byung-Ha Kang ◽  
Hyeong-Min Lee ◽  
Sung-Jun Lee ◽  
Han-Seul Kim ◽  
...  

2021 ◽  
Author(s):  
Sebastián Cerminati ◽  
Mélanie Leroux ◽  
Pablo Anselmi ◽  
Salvador Peirú ◽  
Juan C. Alonso ◽  
...  

AbstractHyaluronic acid (HA) is a high value glycosaminoglycan mostly used in health and cosmetic applications. Commercial HA is produced from animal tissues or in toxigenic bacteria of the genus Streptococcus grown in complex media, which are expensive and raise environmental concerns due to the disposal of large amounts of broth with high organic loads. Other microorganisms were proposed as hosts for the heterologous production of HA, but the methods are still costly. The extraordinary capacity of this biopolymer to bind and retain water attracts interest for large scale applications where biodegradable materials are needed, but its high cost and safety concerns are barriers for its adoption.Bacillus subtilis 3NA strain is prototrophic, amenable for genetic manipulation, GRAS, and can rapidly reach high cell densities in salt-based media. These phenotypic traits were exploited to create a platform for biomolecule production using HA as a proof of concept. First, the 3NA strain was engineered to produce HA; second, a chemically defined medium was formulated using commodity-priced inorganic salts combined at the stoichiometric ratios needed to build the necessary quantities of biomass and HA; and third, a scalable fermentation process, where HA can be produced at the maximum volumetric productivity (VP), was designed.A comparative economic analysis against other methods indicates that the new process may increase the operating profit of a manufacturing plant by more than 100 %. The host, the culture medium, and the rationale employed to develop the fermentation process described here, introduce an IP free platform that could be adaptable for production of other biomolecules.Key PointsA platform for the production of biomolecules was designed based on B. subtilis 3NA, a chemically defined medium and a fermentation process.As proof of concept, high quality hyaluronic acid was produced with an environmentally friendly process.A techno-economic analysis indicates that the process is more that 100% profitable than current methods.


2021 ◽  
Vol 11 ◽  
Author(s):  
Leticia Lázaro-Antón ◽  
María Jesús de Miguel ◽  
Thibault Barbier ◽  
Raquel Conde-Álvarez ◽  
Pilar M. Muñoz ◽  
...  

Brucella species cause brucellosis, a worldwide extended zoonosis. The brucellae are related to free-living and plant-associated α2-Proteobacteria and, since they multiply within host cells, their metabolism probably reflects this adaptation. To investigate this, we used the rodent-associated Brucella suis biovar 5, which in contrast to the ruminant-associated Brucella abortus and Brucella melitensis and other B. suis biovars, is fast-growing and conserves the ancestral Entner-Doudoroff pathway (EDP) present in the plant-associated relatives. We constructed mutants in Edd (glucose-6-phosphate dehydratase; first EDP step), PpdK (pyruvate phosphate dikinase; phosphoenolpyruvate ⇌ pyruvate), and Pyk (pyruvate kinase; phosphoenolpyruvate → pyruvate). In a chemically defined medium with glucose as the only C source, the Edd mutant showed reduced growth rates and the triple Edd-PpdK-Pyk mutant did not grow. Moreover, the triple mutant was also unable to grow on ribose or xylose. Therefore, B. suis biovar 5 sugar catabolism proceeds through both the Pentose Phosphate shunt and EDP, and EDP absence and exclusive use of the shunt could explain at least in part the comparatively reduced growth rates of B. melitensis and B. abortus. The triple Edd-PpdK-Pyk mutant was not attenuated in mice. Thus, although an anabolic use is likely, this suggests that hexose/pentose catabolism to pyruvate is not essential for B. suis biovar 5 multiplication within host cells, a hypothesis consistent with the lack of classical glycolysis in all Brucella species and of EDP in B. melitensis and B. abortus. These results and those of previous works suggest that within cells, the brucellae use mostly 3 and 4 C substrates fed into anaplerotic pathways and only a limited supply of 5 and 6 C sugars, thus favoring the EDP loss observed in some species.


2021 ◽  
Vol 22 (1) ◽  
pp. 472
Author(s):  
Michele Dei Cas ◽  
Ileana Vigentini ◽  
Sara Vitalini ◽  
Antonella Laganaro ◽  
Marcello Iriti ◽  
...  

Given the pharmacological properti es and the potential role of kynurenic acid (KYNA) in human physiology and the pleiotropic activity of the neurohormone melatonin (MEL) involved in physiological and immunological functions and as regulator of antioxidant enzymes, this study aimed at evaluating the capability of Saccharomyces cerevisiae EC1118 to release tryptophan derivatives (dTRPs) from the kynurenine (KYN) and melatonin pathways. The setting up of the spectroscopic and chromatographic conditions for the quantification of the dTRPs in LC-MS/MS system, the optimization of dTRPs’ production in fermentative and whole-cell biotransformation approaches and the production of dTRPs in a soybean-based cultural medium naturally enriched in tryptophan, as a case of study, were included in the experimental plan. Variable amounts of dTRPs, with a prevalence of metabolites of the KYN pathway, were detected. The LC-MS/MS analysis showed that the compound synthesized at highest concentration is KYNA that reached 9.146 ± 0.585 mg/L in fermentation trials in a chemically defined medium at 400 mg/L TRP. Further experiments in a soybean-based medium confirm KYNA as the main dTRPs, whereas the other dTRPs reached very lower concentrations. While detectable quantities of melatonin were never observed, two MEL isomers were successfully measured in laboratory media.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Frédéric M. Lapierre ◽  
Jakob Schmid ◽  
Benjamin Ederer ◽  
Nina Ihling ◽  
Jochen Büchs ◽  
...  

AbstractMicrobial induced calcite precipitation (MICP) based on ureolysis has a high potential for many applications, e.g. restoration of construction materials. The gram-positive bacterium Sporosarcina pasteurii is the most commonly used microorganism for MICP due to its high ureolytic activity. However, Sporosarcina pasteurii is so far cultivated almost exclusively in complex media, which only results in moderate biomass concentrations at the best. Cultivation of Sporosarcina pasteurii must be strongly improved in order to make technological application of MICP economically feasible. The growth of Sporosarcina pasteurii DSM 33 was boosted by detecting auxotrophic deficiencies (L-methionine, L-cysteine, thiamine, nicotinic acid), nutritional requirements (phosphate, trace elements) and useful carbon sources (glucose, maltose, lactose, fructose, sucrose, acetate, L-proline, L-alanine). These were determined by microplate cultivations with online monitoring of biomass in a chemically defined medium and systematically omitting or substituting medium components. Persisting growth limitations were also detected, allowing further improvement of the chemically defined medium by the addition of glutamate group amino acids. Common complex media based on peptone and yeast extract were supplemented based on these findings. Optical density at the end of each cultivation of the improved peptone and yeast extract media roughly increased fivefold respectively. A maximum OD600 of 26.6 ± 0.7 (CDW: 17.1 ± 0.5 g/L) was reached with the improved yeast extract medium. Finally, culture performance and media improvement was analysed by measuring the oxygen transfer rate as well as the backscatter during shake flask cultivation.


Sign in / Sign up

Export Citation Format

Share Document