Hydrolysis of plasmalogen by phospholipase A1 from Streptomyces albidoflavus for early detection of dementia and arteriosclerosis

2015 ◽  
Vol 38 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Shin-ich Sakasegawa ◽  
Ryota Maeba ◽  
Kazutaka Murayama ◽  
Hideyuki Matsumoto ◽  
Daisuke Sugimori
1992 ◽  
Vol 288 (3) ◽  
pp. 965-968 ◽  
Author(s):  
K Badiani ◽  
X Lu ◽  
G Arthur

We have recently characterized lysophospholipase A2 activities in guinea-pig heart microsomes and postulated that these enzymes act sequentially with phospholipases A1 to release fatty acids selectively from phosphatidylcholine (PC) and phosphatidylethanolamine, thus providing an alternative route to the phospholipase A2 mode of release. In a further investigation of the postulated pathway, we have characterized the PC-hydrolysing phospholipase A1 in guinea-pig heart microsomes. Our results show that the enzyme may have a preference for substrates with C16:0 over C18:0 at the sn-1 position. In addition, although the enzyme cleaves the sn-1 fatty acid, the rate of hydrolysis of PC substrates with C16:0 at the sn-1 position was influenced by the nature of the fatty acid at the sn-2 position. The order of decreasing preference was C18:2 > C20:4 = C18:1 > C16:0. The hydrolyses of the molecular species were differentially affected by heating at 60 degrees C. An investigation into the effect of nucleotides on the activity of the enzyme showed that guanosine 5′-[gamma-thio]triphosphate (GTP[S]) inhibited the hydrolysis of PC by phospholipase A1 activity, whereas GTP, guanosine 5′-[beta-thio]diphosphate (GDP[S]), GDP, ATP and adenosine 5′-[gamma-thio]triphosphate (ATP[S]) did not affect the activity. The inhibitory effect of GTP[S] on phospholipase A1 activity was blocked by preincubation with GDP[S]. A differential effect of GTP[S] on the hydrolysis of different molecular species was also observed. Taken together, the results of this study suggest the presence of more than one phospholipase A1 in the microsomes with different substrate specificities, which act sequentially with lysophospholipase A2 to release linoleic or arachidonic acid selectively from PC under resting conditions. Upon stimulation and activation of the G-protein, the release of fatty acids would be inhibited.


2013 ◽  
Vol 182 (2) ◽  
pp. 192-196 ◽  
Author(s):  
Kazutaka Murayama ◽  
Kota Kano ◽  
Yusaku Matsumoto ◽  
Daisuke Sugimori

1975 ◽  
Vol 148 (2) ◽  
pp. 197-208 ◽  
Author(s):  
R J Gullis ◽  
C E Rowe

1. The distribution of the hydrolyses of phosphatidylcholine by phospholipase A2 and phospholipase A1, and the hydrolysis of lysophosphatidylcholine by lysophospholipase, in subcellular and subsynaptosomal fractions of cerebral cortices of guinea-pig brain, was determined. 2. Noradrenaline stimulated hydrolysis by phospholipase A2 in whole synaptosomes, synaptic membranes and fractions containing synaptic vesicles. 3. Stimulation of hydrolysis by phospholipase A2 in synaptic membranes by noradrenaline was enhanced by CaCl2, and by a mixture of ATP and MgCl2. The optimum concentration of CaCl2, in the presence of ATP and MgCl2, for stimulation by 10 muM-noradrenaline was in the range 1-10muM. The optimum concentration for ATP-2MgCl2 in the presence of 1 muM-CaCl2 was in the range 0.1-1mM. 4. Hydrolysis by phospholipase A2 of synaptic membranes was also stimulated by acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine), histamine, psi-aminobutyric acid, glutamic acid and aspartic acid. With appropriate concentrations of cofactors, sigmoidal dose-response curves were obtained, half-maximum stimulations being obtained with concentrations of stimulant in the range 0.1-1muM. 5. Taurine also stimulated hydrolysis of phosphatidylcholine by phospholipase A2. There were only slight stimulations with methylamine, ethylenediamine or spermidine. No stimulation was obtained with glucagon.


1988 ◽  
Vol 263 (26) ◽  
pp. 12964-12969 ◽  
Author(s):  
G L Kucera ◽  
C Miller ◽  
P J Sisson ◽  
R W Wilcox ◽  
Z Wiemer ◽  
...  

2018 ◽  
Vol 10 ◽  
pp. 44-51 ◽  
Author(s):  
Shiro Mawatari ◽  
Seira Hazeyama ◽  
Tomomi Morisaki ◽  
Takehiko Fujino

LWT ◽  
2020 ◽  
Vol 129 ◽  
pp. 109562
Author(s):  
Zi-zhe Cai ◽  
Hong-fei Wang ◽  
Wan-zhen Li ◽  
Wan Jun Lee ◽  
Wen Li ◽  
...  

1996 ◽  
Vol 271 (6) ◽  
pp. E1073-E1082 ◽  
Author(s):  
R. D. Shamburek ◽  
L. A. Zech ◽  
P. S. Cooper ◽  
J. M. Vandenbroek ◽  
C. C. Schwartz

Metabolism of 1-stearoyl-2-arachidonyl-phosphatidyl-choline (SAPC), a major phosphatidylcholine (PC) species in rat plasma, was compared with 1-palmitoyl-2-linoleoyl-PC (PLPC) metabolism. High-density lipoproteins containing SAPC and PLPC tracers labeled in the sn-2 fatty acid with 3H and 14C isotopes, respectively, were administered. The rats were depleted of endogenous bile acids and infused via the ileum with individual bile acids that ranged widely in hydrophobicity. The half-lives for SAPC and PLPC in plasma were 48 and 57 min, respectively. Most of the 3H activity that disappeared from plasma at 1 h was found in the liver in 1-palmitoyl-2-arachidonyl-PC, SAPC, and 1-oleoyl-2-arachidonyl-PC, indicating phospholipase A1 hydrolysis of plasma SAPC forming 2-arachidonyl-lysophosphatidylcholine, which was reacylated in the liver. Plasma PLPC also underwent phospholipase A1 hydrolysis, as reported previously. The fraction of 3H dose that accumulated in plasma cholesteryl arachidonate was two- to threefold higher than the fraction of 14C dose in cholesteryl linoleate. Multicompartmental models for SAPC and PLPC were developed that included lysophosphatidylcholines and cholesteryl esters. Bile acids did not influence plasma PC metabolism. Lecithin-cholesterol acyltransferase and phospholipase A1 (hepatic lipase) hydrolysis accounted for > or = 90% of the SAPC and PLPC that disappeared from plasma; SAPC and PLPC are comparable as substrates for hepatic lipase, but SAPC is preferred by lecithin-cholesterol acyltransferase.


2010 ◽  
Vol 121 (4) ◽  
pp. 1066-1072 ◽  
Author(s):  
Yong Wang ◽  
Mouming Zhao ◽  
Keke Song ◽  
Lili Wang ◽  
Shuze Tang ◽  
...  

1978 ◽  
Vol 56 (5) ◽  
pp. 319-323 ◽  
Author(s):  
P. Proulx ◽  
G. Nantel ◽  
G. Baraff

An enzyme with phospholipase A1 activity was purified some 500-fold from Escherichia coli cell homogenates. Lipase, phospholipase A2, and lysophospholipase copurified with phospholipase A1 and the four activities displayed similar susceptibility to heat treatment. The phospholipase A and lipase activities were recovered in a single band when partially purified preparations were subjected to SDS gel electrophoresis. Phospholipase, lysophospholipase, and lipase all required Ca2+ for activity. Phosphatidylcholine, phosphatidylethanolamine, and their lyso analogues were all hydrolysed at equivalent rates and these were substantially greater than the rate of methylpalmitate or tripalmitoylglycerol hydrolyses under similar incubation conditions. Evidence for a direct but slow hydrolysis of the ester at position 2 of phosphoglyceride was obtained; however, release of fatty acid from this position is mostly indirect involving acyl migration to position 1 and subsequent release of the translocated fatty acid. Escherichia coli, therefore, appears to possess a lipolytic enzyme of broad substrate specificity acting mainly at position 1 but also at position 2 of phosphoglycerides and on triacylglycerols and methyl fatty-acid esters.


Sign in / Sign up

Export Citation Format

Share Document