The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants

2015 ◽  
Vol 24 (8) ◽  
pp. 1843-1857 ◽  
Author(s):  
José M. Gómez ◽  
Adela González-Megías ◽  
Juan Lorite ◽  
Mohamed Abdelaziz ◽  
Francisco Perfectti
2012 ◽  
Vol 2 (8) ◽  
pp. 619-622 ◽  
Author(s):  
Stefan Dullinger ◽  
Andreas Gattringer ◽  
Wilfried Thuiller ◽  
Dietmar Moser ◽  
Niklaus E. Zimmermann ◽  
...  

2014 ◽  
Vol 23 (2) ◽  
pp. 119-136 ◽  
Author(s):  
Woo-Seok Kong ◽  
Kunok Kim ◽  
Slegee Lee ◽  
Heena Park ◽  
Soo-Hyun Cho

Plant Biology ◽  
2017 ◽  
Vol 20 ◽  
pp. 50-62 ◽  
Author(s):  
L. Giménez-Benavides ◽  
A. Escudero ◽  
R. García-Camacho ◽  
A. García-Fernández ◽  
J. M. Iriondo ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 137
Author(s):  
Rosina Magaña Ugarte ◽  
María Pilar Gómez-Serranillos ◽  
Adrián Escudero ◽  
Rosario G. Gavilán

Albeit the remarkably high Ultraviolet B loads, high temperatures, and drought stress substantiate the need for efficient photoprotective strategies in Mediterranean high-mountain plants, these remain understudied. Considering the sensitivity of photosystems to extreme conditions, we evaluated an environmental gradient’s weight on the photoprotection of five high-mountain specialists from Central Spain. Diurnal and seasonal variations in chlorophyll, chlorophyll fluorescence, carotenoids, and xanthophylls in consecutive and climatically contrasting years were taken to evaluate the effect of the impending climate coarsening at the photosystem level. Our results revealed significant differences among species in the xanthophyll cycle functioning, acting either as a continuous photoprotective strategy enhancing photochemistry-steadiness; or prompted only to counteract the cumulative effects of atypically adverse conditions. The lutein cycle’s involvement is inferred from the high lutein content found in all species and elevations, acting as a sustained photoprotective strategy. These findings added to high de-epoxidation state (DEPS) and minor seasonal changes in the chlorophyll a/b ratio, infer the xanthophyll and Lutein cycles are crucial for upkeeping the photosystems’ optimal functioning in these plants heightening their photoprotective capacity during periods of more unfavorable conditions. Nevertheless, an atypically dry growing season’s detrimental effect infers the feasible surpassing of stress-thresholds and the precariousness of the communities’ functional diversity under climate change.


2021 ◽  
Vol 13 (5) ◽  
pp. 2677
Author(s):  
Adrian Brügger ◽  
Robert Tobias ◽  
Fredy S. Monge-Rodríguez

How people subjectively perceive climate change strongly influences how they respond to its challenges. To date, relatively little is known about such perceptions in the Global South. This research examines public perceptions of climate change in the Peruvian Andes, a semi-arid high-mountain region that is highly exposed and vulnerable to adverse effects of climate change. Based on questionnaire data collected through face-to-face interviews (N = 1316), we found that respondents identify various climate-related issues as the most important challenges for their country. Many of these issues are related to water. Respondents also noticed more subtle changes and expected them to continue (e.g., extreme temperatures, food shortages). Climate impacts were clearly seen as negative, which was also reflected in the presence of emotions. When compared to previous research, more respondents had personally experienced extreme weather events (80%) and they were more certain that the climate is already changing, is caused by human activity, and is affecting distant and close places similarly. A comparison of the perceptions along different socioeconomic characteristics suggests that more vulnerable groups (e.g., rural, low income and education levels) tended to perceive climate change as more consequential, closer, and as a more natural (vs. anthropogenic) phenomenon than those from less vulnerable groups. The salience of water-related problems and personal experiences of climate-related events, as well as differences between various subgroups, could be used to improve measures to adapt to the consequences of climate change by correcting misconceptions of the population and of decisionmakers.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 243
Author(s):  
Javier Alcocer ◽  
Luis A. Oseguera ◽  
Diana Ibarra-Morales ◽  
Elva Escobar ◽  
Lucero García-Cid

High-mountain lakes are among the most comparable ecosystems globally and recognized sentinels of global change. The present study pursued to identify how the benthic macroinvertebrates (BMI) communities of two tropical, high mountain lakes, El Sol and La Luna, Central Mexico, have been affected by global/regional environmental pressures. We compared the environmental characteristics and the BMI communities between 2000–2001 and 2017–2018. We identified three principal environmental changes (the air and water temperature increased, the lakes’ water level declined, and the pH augmented and became more variable), and four principal ecological changes in the BMI communities [a species richness reduction (7 to 4), a composition change, and a dominant species replacement all of them in Lake El Sol, a species richness increase (2 to 4) in Lake La Luna, and a drastic reduction in density (38% and 90%) and biomass (92%) in both lakes]. The air and water temperature increased 0.5 °C, and lakes water level declined 1.5 m, all suggesting an outcome of climate change. Contrarily to the expected acidification associated with acid precipitation, both lakes deacidified, and the annual pH fluctuation augmented. The causes of the deacidification and the deleterious impacts on the BMI communities remained to be identified.


2008 ◽  
Vol 14 (5) ◽  
pp. 1089-1103 ◽  
Author(s):  
MANDAR R. TRIVEDI ◽  
PAMELA M. BERRY ◽  
MICHAEL D. MORECROFT ◽  
TERENCE P. DAWSON

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


Diversity ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
George Kazakis ◽  
Dany Ghosn ◽  
Ilektra Remoundou ◽  
Panagiotis Nyktas ◽  
Michael A. Talias ◽  
...  

High mountain zones in the Mediterranean area are considered more vulnerable in comparison to lower altitudes zones. Lefka Ori massif, a global biodiversity hotspot on the island of Crete is part of the Global Observation Research Initiative in Alpine Environments (GLORIA) monitoring network. The paper examines species and vegetation changes with respect to climate and altitude over a seven-year period (2001–2008) at a range of spatial scales (10 m Summit Area Section-SAS, 5 m SAS, 1 m2) using the GLORIA protocol in a re-survey of four mountain summits (1664 m–2339 m). The absolute species loss between 2001–2008 was 4, among which were 2 endemics. At the scale of individual summits, the highest changes were recorded at the lower summits with absolute species loss 4 in both cases. Paired t-tests for the total species richness at 1 m2 between 2001–2008, showed no significant differences. No significant differences were found at the individual summit level neither at the 5 m SAS or the 10 m SAS. Time series analysis reveals that soil mean annual temperature is increasing at all summits. Linear regressions with the climatic variables show a positive effect on species richness at the 5 m and 10 m SAS as well as species changes at the 5 m SAS. In particular, June mean temperature has the highest predictive power for species changes at the 5 m SAS. Recorded changes in species richness point more towards fluctuations within a plant community’s normal range, although there seem to be more significant diversity changes in higher summits related to aspects. Our work provides additional evidence to assess the effects of climate change on plant diversity in Mediterranean mountains and particularly those of islands which remain understudied.


Sign in / Sign up

Export Citation Format

Share Document