Removal of nitrogen and phosphorus from sediment and overlying water by double electrolytic-driven remediation and its effect on microbial community structure in sediment

2021 ◽  
Author(s):  
Sanshan Li ◽  
Tangming Ma ◽  
Chaoqun Zheng ◽  
Zhaofang He ◽  
Liuyan Yang ◽  
...  
2005 ◽  
Vol 52 (9) ◽  
pp. 107-114 ◽  
Author(s):  
U. Hasanudin ◽  
M. Fujita ◽  
Y. Koibuchi ◽  
K. Fujie

Dynamic changes in the chemical environment in the bottom of overlying water and microbial community structure in trench and flat seabed sediments were evaluated during summer and autumn in Tokyo Bay, Japan, to elucidate the response of microbial community changes as a consequence of dredging activity. Quinone profile analysis was performed to evaluate the changes in microbial community structure in the sediments. Bottom shape and location of each station affected the chemical environment of the overlying water. The trench bottom shape had longer anoxic conditions than the flat bottom shape. Nitrogen and phosphorus concentrations affected the microbial density in the sediment. During anoxic conditions, the ubiquinone/menaquinone ratio (UQ/MK) was less than unity and increased with rising dissolved oxygen (DO) concentrations. The dominant quinone species in the trench and flat seabed sediments were MK with 6 and 7 isoprene units (MK-6 and MK-7) and UQ with 8 and 9 isoprene units (UQ-8 and UQ-9). MK-6 and UQ-8 containing bacteria might have a great influence on the sulfur cycle of the aquatic ecosystem. While, MK-7 and UQ-9 containing bacteria correlated with the deposition of phototropic bacteria cells onto the seabed sediment. The trench bottom shape contained higher concentrations of MK-6, MK-7, UQ-8 and UQ-9, especially during summer.


Author(s):  
Yong Li ◽  
Jiejie Zhang ◽  
Jianqiang Zhang ◽  
Wenlai Xu ◽  
Zishen Mou

To study the microbial community structure in sediments and its relation to eutrophication environment factors, the sediments and the overlying water of Sancha Lake were collected in the four seasons. MiSeq high-throughput sequencing was conducted for the V3–V4 hypervariable regions of the 16S rRNA gene and was used to analyze the microbial community structure in sediments. Pearson correlation and redundancy analysis (RDA) were conducted to determine the relation between microbial populations and eutrophic factors. The results demonstrated four main patterns: (1) in the 36 samples that were collected, the classification annotation suggested 64 phyla, 259 classes, 476 orders, 759 families, and 9325 OTUs; (2) The diversity indices were ordered according to their values as with summer > winter > autumn > spring; (3) The microbial populations in the four seasons belonged to two distinct characteristic groups; (4) pH, dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN) had significant effects on the community composition and structure, which further affected the dissolved total phosphorus (DTP) significantly. The present study demonstrates that the microbial communities in Sancha Lake sediments are highly diverse, their compositions and distributions are significantly different between spring and non-spring, and Actinobacteria and Cyanobacteria may be the key populations or indicator organisms for eutrophication.


2008 ◽  
Vol 59 (10) ◽  
pp. 890 ◽  
Author(s):  
A. N. Boulding ◽  
G. N. Rees ◽  
D. S. Baldwin ◽  
P. J. Suter ◽  
G. O. Watson

Although drought and drying of waters occur globally, the effect of drying on sediment microbial communities underpinning aquatic biogeochemical processes is poorly understood. We used the molecular method of terminal-restriction fragment length polymorphism (T-RFLP) to assess changes in the microbial community structure of sediments undergoing different levels of inundation and drying within a reservoir during drawdown in a drought. Sediments with three hydrological conditions were investigated: dry sediments (no overlying water), littoral sediments (covered with 1–2 mm water) and inundated sediments (covered with >1 m water). Sampling was done in winter 2006 (August) and summer 2007 (January) in Lake Hume, Australia. The microbial communities differed significantly between the different levels of inundation at each sampling time. Community structure also changed significantly within each site between winter 2006 and summer 2007, possibly influenced by the change of season or protracted drying. Sites that were ‘littoral’ in winter 2006 became ‘dry’ in summer 2007, and became more similar to communities that were ‘dry’ at both sampling times. This suggested that the hydrological history of specific sites did not heavily influence the response of microbial communities to severe drying, and all communities undergoing ‘dry’ conditions within the summer 2007 sampling responded similarly.


2011 ◽  
Vol 77 (22) ◽  
pp. 7942-7953 ◽  
Author(s):  
J. P. Bassin ◽  
M. Pronk ◽  
G. Muyzer ◽  
R. Kleerebezem ◽  
M. Dezotti ◽  
...  

ABSTRACTThe long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA andamoAgenes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria as well as the metabolically active fraction of bacteria. Fluorescencein situhybridization (FISH) was used to validate the PCR-based results and to quantify the dominant bacterial populations. The results demonstrated that ammonium removal efficiency was not affected by salt concentrations up to 33 g/liter NaCl. Conversely, a high accumulation of nitrite was observed above 22 g/liter NaCl, which coincided with the disappearance ofNitrospirasp. Phosphorus removal was severely affected by gradual salt increase. No P release or uptake was observed at steady-state operation at 33 g/liter NaCl, exactly when the polyphosphate-accumulating organisms (PAOs), “CandidatusAccumulibacter phosphatis” bacteria, were no longer detected by PCR-DGGE or FISH. Batch experiments confirmed that P removal still could occur at 30 g/liter NaCl, but the long exposure of the biomass to this salinity level was detrimental for PAOs, which were outcompeted by glycogen-accumulating organisms (GAOs) in the bioreactor. GAOs became the dominant microorganisms at increasing salt concentrations, especially at 33 g/liter NaCl. In the comparative analysis of the diversity (DNA-derived pattern) and the activity (cDNA-derived pattern) of the microbial population, the highly metabolically active microorganisms were observed to be those related to ammonia (Nitrosomonassp.) and phosphate removal (“CandidatusAccumulibacter”).


2021 ◽  
Author(s):  
Xue Li ◽  
Tianie Wang ◽  
Baorong Fu ◽  
Xiyan Mu

Abstract Nutrients nitrogen and phosphorus pollution in aquaculture is one of the greatest challenges threatening the survival of aquatic organisms, which requires efficient and sustainable remediation approach. Microbial remediation, especially the application of probiotics, has recently gained popularity in improving the water quality and maintaining the health condition of aquatic animals. In the present study, two groups of mixed Bacillus (Bacillus megaterium and Bacillus subtilis (A0+BS) and Bacillus megaterium and Bacillus coagulans (A0+BC)) were applied to aquaculture system of Crucian carp to improve the treatment of nitrogenous and phosphorus compounds. The effects of mixed Bacillus on water quality, and the structure and function of microbial communities in aquaculture water were investigated. Our results showed that the improvement effect of mixed Bacillus A0+BS on water quality was better than that of A0+BC, and the NH4+-N, NO2--N, NO3--N and total phosphorus (TP) concentrations were reduced by 46.3%, 76.3%, 35.6%, and 80.3%, respectively. In addition, both groups of mixed Bacillus increased the diversity of bacterial community and decreased the diversity of fungal community. Microbial community analysis showed that mixed Bacillus A0+BS increased the relative abundance of bacteria related with nitrogen and phosphorus removal, e.g., Proteobacteria, Actinobacteria, Comamonas, and Stenotrophomonas, but decreased the relative abundance of pathogenic bacteria (Acinetobacter and Pseudomonas) and fungi (Epicoccum and Fusarium). The redundancy analysis showed that NH4+-N, NO2--N, and TP were primary environmental factors affecting the microbial community in aquaculture water. PICRUST analysis indicated that all functional pathways in the treatment groups were up-regulated, and all pathways in A0+BS group were richer than those in other groups. These results indicated that mixed Bacillus A0+BS addition produced good results in reducing nitrogenous and phosphorus compounds and shaped a favorable microbial community structure to further improve water quality.


2011 ◽  
Vol 24 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Jackie Aislabie ◽  
James Bockheim ◽  
Malcolm Mcleod ◽  
David Hunter ◽  
Bryan Stevenson ◽  
...  

AbstractFour pedons on each of four drift sheets in the Lake Wellman area of the Darwin Mountains were sampled for chemical and microbial analyses. The four drifts, Hatherton, Britannia, Danum, and Isca, ranged from early Holocene (10 ka) to mid-Quaternary (c. 900 ka). The soil properties of weathering stage, salt stage, and depths of staining, visible salts, ghosts, and coherence increase with drift age. The landforms contain primarily high-centred polygons with windblown snow in the troughs. The soils are dominantly complexes of Typic Haplorthels and Typic Haploturbels. The soils were dry and alkaline with low levels of organic carbon, nitrogen and phosphorus. Electrical conductivity was high accompanied by high levels of water soluble anions and cations (especially calcium and sulphate in older soils). Soil microbial biomass, measured as phospholipid fatty acids, and numbers of culturable heterotrophic microbes, were low, with highest levels detected in less developed soils from the Hatherton drift. The microbial community structure of the Hatherton soil also differed from that of the Britannia, Danum and Isca soils. Ordination revealed the soil microbial community structure was influenced by soil development and organic carbon.


Sign in / Sign up

Export Citation Format

Share Document