In situ three-dimensional printing for reparative and regenerative therapy

2019 ◽  
Vol 21 (2) ◽  
Author(s):  
Nureddin Ashammakhi ◽  
Samad Ahadian ◽  
Ippokratis Pountos ◽  
Shu-Kai Hu ◽  
Nazzar Tellisi ◽  
...  
Author(s):  
Simon W Partridge ◽  
Matthew J Benning ◽  
Matthew J German ◽  
Kenneth W Dalgarno

This article describes a proof of concept study designed to evaluate the potential of an in vivo three-dimensional printing route to support minimally invasive repair of the musculoskeletal system. The study uses a photocurable material to additively manufacture in situ a model implant and demonstrates that this can be achieved effectively within a clinically relevant timescale. The approach has the potential to be applied with a wide range of light-curable materials and with development could be applied to create functionally gradient structures in vivo.


2016 ◽  
Vol 23 (2) ◽  
pp. 622-628 ◽  
Author(s):  
Elisabetta Achilli ◽  
Alessandro Minguzzi ◽  
Alberto Visibile ◽  
Cristina Locatelli ◽  
Alberto Vertova ◽  
...  

Three-dimensional printed multi-purpose electrochemical devices for X-ray absorption spectroscopy are presented in this paper. The aim of this work is to show how three-dimensional printing can be a strategy for the creation of electrochemical cells forin situandin operandoexperiments by means of synchrotron radiation. As a case study, the description of two cells which have been employed in experiments on photoanodes for photoelectrochemical water splitting are presented. The main advantages of these electrochemical devices are associated with their compactness and with the precision of the three-dimensional printing systems which allows details to be obtained that would otherwise be difficult. Thanks to these systems it was possible to combine synchrotron-based methods with complementary techniques in order to study the mechanism of the photoelectrocatalytic process.


2009 ◽  
Vol 00 (00) ◽  
pp. 090730035508060-7
Author(s):  
Deng-Guang Yu ◽  
Chris Branford-White ◽  
Yi-Cheng Yang ◽  
Li-Min Zhu ◽  
Edward William Welbeck ◽  
...  

2020 ◽  
Vol 13 (12) ◽  
pp. e239286
Author(s):  
Kumar Nilesh ◽  
Prashant Punde ◽  
Nitin Shivajirao Patil ◽  
Amol Gautam

Ossifying fibroma (OF) is a rare, benign, fibro-osseous lesion of the jawbone characterised by replacement of the normal bone with fibrous tissue. The fibrous tissue shows varying amount of calcified structures resembling bone and/or cementum. The central variant of OF is rare, and shows predilection for mandible among the jawbone. Although it is classified as fibro-osseous lesion, it clinically behaves as a benign tumour and can grow to large size, causing bony swelling and facial asymmetry. This paper reports a case of large central OF of mandible in a 40-year-old male patient. The lesion was treated by segmental resection of mandible. Reconstruction of the surgical defect was done using avascular fibula bone graft. Role of three-dimensional printing of jaw and its benefits in surgical planning and reconstruction are also highlighted.


Author(s):  
Leandro Ejnisman ◽  
Bruno Gobbato ◽  
Andre Ferrari de França Camargo ◽  
Eduardo Zancul

Sign in / Sign up

Export Citation Format

Share Document