scholarly journals Sustaining Attention for a Prolonged Duration Affects Dynamic Organizations of Frequency-Specific Functional Connectivity

2020 ◽  
Vol 33 (6) ◽  
pp. 677-692
Author(s):  
Jia Liu ◽  
Yongjie Zhu ◽  
Hongjin Sun ◽  
Tapani Ristaniemi ◽  
Fengyu Cong

Abstract Sustained attention encompasses a cascade of fundamental functions. The human ability to implement a sustained attention task is supported by brain networks that dynamically formed and dissolved through oscillatory synchronization. The decrement of vigilance induced by prolonged task engagement affects sustained attention. However, little is known about which stage or combinations are affected by vigilance decrement. Here, we applied an analysis framework composed of weighted phase lag index (wPLI) and tensor component analysis (TCA) to an EEG dataset collected during 80 min sustained attention task to examine the electrophysiological basis of such effect. We aimed to characterize the phase-coupling networks to untangle different phases involved in sustained attention and study how they are modulated by vigilance decrement. We computed the time–frequency domain wPLI from each block and subject and constructed a fourth-order tensor, containing the time, frequency, functional connectivity (FC), and blocks × subjects. This tensor was subjected to the TCA to identify the interacted and low-dimensional components representing the frequency-specific dynamic FC (fdFC). We extracted four types of neuromakers during a sustained attention task, namely the pre-stimulus alpha right-lateralized parieto-occipital FC, the post-stimulus theta fronto-parieto-occipital FC, delta fronto-parieto-occipital FC, and beta right/left sensorimotor FCs. All these fdFCs were impaired by vigilance decrement. These fdFCs, except for the beta left sensorimotor network, were restored by rewards, although the restoration by reward in the beta right sensorimotor network was transient. These findings provide implications for dissociable effects of vigilance decrement on sustained attention by utilizing the tensor-based framework.

2018 ◽  
Author(s):  
Leon C. Reteig ◽  
Ruud L. van den Brink ◽  
Sam Prinssen ◽  
Michael X Cohen ◽  
Heleen A. Slagter

AbstractOur ability to stay focused is limited: prolonged performance of a task typically results in mental fatigue and decrements in performance over time. This so-called vigilance decrement has been attributed to depletion of attentional resources, though other factors such as reductions in motivation likely also play a role. In this study, we examined three EEG markers of attentional control, to elucidate which stage of attentional processing is most affected by time-on-task and motivation. To elicit the vigilance decrement, participants performed a sustained attention task for 80 minutes without breaks. After 60 minutes, participants were motivated by an unexpected monetary incentive to increase performance in the final 20 minutes. We found that task performance and self-reported motivation declined rapidly, reaching a stable levels well before the motivation manipulation was introduced. Thereafter, motivation increased back up to the initial level, and remained there for the final 20 minutes. While task performance also increased, it did not return to the initial level, and fell to the lowest level overall during the final 10 minutes. This pattern of performance changes was mirrored by the trial-to-trial consistency of the phase of theta (3–7 Hz) oscillations, an index of the variability in timing of the neural response to the stimulus. As task performance decreased, temporal variability increased, suggesting that attentional stability is crucial for sustained attention performance. The effects of attention on our two other EEG measures—early P1/N1 event-related potentials and pre-stimulus alpha (9–14 Hz) power—did not change with time-on-task or motivation. In sum, these findings show that the vigilance decrement is accompanied by a decline in only some facets of attentional control, which cannot be fully brought back online by increases in motivation. The vigilance decrement might thus not occur due to a single cause, but is likely multifactorial in origin.


2021 ◽  
pp. 095679762110075
Author(s):  
Jason S. McCarley ◽  
Yusuke Yamani

The vigilance decrement is a decline in signal detection rate that occurs over time on a sustained-attention task. The effect has typically been ascribed to conservative shifts of response bias and losses of perceptual sensitivity. Recent work, though, has suggested that sensitivity losses in vigilance tasks are spurious, and other findings have implied that attentional lapses contribute to vigilance failures. To test these possibilities, we used Bayesian hierarchical modeling to compare psychometric curves for the first and last blocks of a visual vigilance task. Participants were a convenience sample of 99 young adults. Data showed evidence for all three postulated mechanisms of vigilance loss: a conservative shift of response bias, a decrease in perceptual sensitivity, and a tendency toward more frequent attentional lapses. Results confirm that sensitivity losses are possible in a sustained-attention task but indicate that mental lapses can also contribute to the vigilance decrement.


2019 ◽  
Author(s):  
Martine R. van Schouwenburg ◽  
Ilja G. Sligte ◽  
Michael R. Giffin ◽  
Franziska Günther ◽  
Dirk Koster ◽  
...  

AbstractSustained attention is defined as the ability to maintain attention over longer periods of time, which typically declines with time on task (i.e., the vigilance decrement). Previous studies have suggested an important role for the dorsomedial prefrontal cortex (mPFC) in sustained attention. In two experiments, we aimed to enhance sustained attention by applying transcranial electrical current stimulation over the mPFC during a sustained attention task. In the first experiment, we applied transcranial direct current stimulation (tDCS) in a between-subject design (n=97): participants received either anodal, cathodal, or sham stimulation. Contrary to our prediction, we found no effect of stimulation on the vigilance decrement. In the second experiment, participants received theta and alpha transcranial alternating current stimulation (tACS) in two separate sessions (n=47, within-subject design). Here, we found a frequency-dependent effect on the vigilance decrement, such that contrary to our expectation, participants’ performance over time became worse after theta compared to alpha stimulation. However, this result needs to be interpreted with caution given that this effect could be driven by differential side effects between the two stimulation frequencies. To conclude, across two studies, we were not able to reduce the vigilant decrement using tDCS or theta tACS.


2012 ◽  
Vol 62 (7) ◽  
pp. 2320-2327 ◽  
Author(s):  
John J. Foxe ◽  
Kristen P. Morie ◽  
Peter J. Laud ◽  
Matthew J. Rowson ◽  
Eveline A. de Bruin ◽  
...  

2004 ◽  
Vol 178 (2-3) ◽  
pp. 211-222 ◽  
Author(s):  
Mohammed Shoaib ◽  
Lisiane Bizarro

2007 ◽  
Vol 28 (11) ◽  
pp. 1178-1193 ◽  
Author(s):  
Cornelis J. Stam ◽  
Guido Nolte ◽  
Andreas Daffertshofer

2018 ◽  
Vol 29 (10) ◽  
pp. 4208-4222 ◽  
Author(s):  
Yuehua Xu ◽  
Miao Cao ◽  
Xuhong Liao ◽  
Mingrui Xia ◽  
Xindi Wang ◽  
...  

Abstract Individual variability in human brain networks underlies individual differences in cognition and behaviors. However, researchers have not conclusively determined when individual variability patterns of the brain networks emerge and how they develop in the early phase. Here, we employed resting-state functional MRI data and whole-brain functional connectivity analyses in 40 neonates aged around 31–42 postmenstrual weeks to characterize the spatial distribution and development modes of individual variability in the functional network architecture. We observed lower individual variability in primary sensorimotor and visual areas and higher variability in association regions at the third trimester, and these patterns are generally similar to those of adult brains. Different functional systems showed dramatic differences in the development of individual variability, with significant decreases in the sensorimotor network; decreasing trends in the visual, subcortical, and dorsal and ventral attention networks, and limited change in the default mode, frontoparietal and limbic networks. The patterns of individual variability were negatively correlated with the short- to middle-range connection strength/number and this distance constraint was significantly strengthened throughout development. Our findings highlight the development and emergence of individual variability in the functional architecture of the prenatal brain, which may lay network foundations for individual behavioral differences later in life.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Alkinoos Athanasiou ◽  
Nikos Terzopoulos ◽  
Niki Pandria ◽  
Ioannis Xygonakis ◽  
Nicolas Foroglou ◽  
...  

Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right) and received the higher inflow (left) among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.


Sign in / Sign up

Export Citation Format

Share Document