brain functional connectivity
Recently Published Documents


TOTAL DOCUMENTS

664
(FIVE YEARS 312)

H-INDEX

40
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Lifu Deng ◽  
Olga Lucia Gamboa ◽  
Moritz Dannhauer ◽  
Anshu Jonnalagadda ◽  
Rena Hamdan ◽  
...  

Transcranial magnetic stimulation (TMS) has become an important technique in both scientific and clinical practices, and yet our understanding of how the brain responds to TMS is still limited. Concurrent neuroimaging during TMS may bridge this gap, and emerging evidence suggests widespread that modulatory effects of TMS may be best captured through changes in functional connectivity between distributed networks, rather than local changes in cortical activity. However, the relationship between TMS stimulation parameters and evoked changes in functional connectivity is unknown. In this study, 24 healthy volunteers received concurrent TMS-fMRI while performing a dot-motion direction discrimination task. An MR-compatible coil was used to apply trains of three pulses at 10 Hz rTMS over the primary visual cortex (V1) at the onset of the dot stimuli with four levels of stimulation intensity (20%, 40%, 80%, and 120% of resting motor threshold, RMT). Behavioral results demonstrated impairment of motion discrimination at 80% RMT. FMRI results yielded three findings. First, functional connectivity between visual and non-visual areas increased as a function of rTMS intensity. Second, connectivity within the visual network was positively associated with motion accuracy, while the connectivity between visual and non-visual regions was negatively associated with motion accuracy. Lastly, we found that reductions in the similarity between functional and structural connectivity associated with increasing TMS intensity were constrained to the visual network. These findings demonstrate spatially dependent nonlinear effects of TMS intensity on brain functional connectivity that proceed beyond the site of stimulation and influence associated behavior.


Author(s):  
Fangyuan Tian ◽  
Hongxia Li ◽  
Shuicheng Tian ◽  
Chenning Tian ◽  
Jiang Shao

(1) Background: As a world-recognized high-risk occupation, coal mine workers need various cognitive functions to process the surrounding information to cope with a large number of perceived hazards or risks. Therefore, it is necessary to explore the connection between coal mine workers’ neural activity and unsafe behavior from the perspective of cognitive neuroscience. This study explored the functional brain connectivity of coal mine workers who have engaged in unsafe behaviors (EUB) and those who have not (NUB). (2) Methods: Based on functional near-infrared spectroscopy (fNIRS), a total of 106 workers from the Hongliulin coal mine of Shaanxi North Mining Group, one of the largest modern coal mines in China, completed the test. Pearson’s Correlation Coefficient (COR) analysis, brain network analysis, and two-sample t-test were used to investigate the difference in brain functional connectivity between the two groups. (3) Results: The results showed that there were significant differences in functional brain connectivity between EUB and NUB among the frontopolar area (p = 0.002325), orbitofrontal area (p = 0.02102), and pars triangularis Broca’s area (p = 0.02888). Small-world properties existed in the brain networks of both groups, and the dorsolateral prefrontal cortex had significant differences in clustering coefficient (p = 0.0004), nodal efficiency (p = 0.0384), and nodal local efficiency (p = 0.0004). (4) Conclusions: This study is the first application of fNIRS to the field of coal mine safety. The fNIRS brain functional connectivity analysis is a feasible method to investigate the neuropsychological mechanism of unsafe behavior in coal mine workers in the view of brain science.


2022 ◽  
Author(s):  
Sven HALLER ◽  
Marie-Louise MONTANDON ◽  
Cristelle RODRIGUEZ ◽  
Panteleimon GIANNAKOPOULOS

Abstract BackgroundWide use of wearing a facemask is one of the many consequences of the COVID-19 pandemic. We used resting-state fMRI to search for subtle changes in brain functional connectivity, expected notably related to the high-level salience (SN) and default mode networks (DMN).Materials and MethodsProspective crossover design resting fMRI study with/without wearing a tight FFP2/KN95 facemask, including 24 consecutive male participants (mean age ± SD = 29.9 ± 6.9 years) at 3T. As physiological parameters, respiration frequency and heart rate were monitored. Data analysis was performed using the CONN toolbox.ResultsWearing an FFP2/KN95 facemask did not impact respiration or heart rate but resulted in a significant reduction in functional connectivity between the SN as the seed region and the left middle frontal and precentral gyrus. No difference was found when the DMN, sensorimotor, visual, dorsal attention or language networks were used as seed regions.ConclusionsThe wearing of tight FFP2/KN95 facemasks in men decreases the functional connectivity of the SN, which is known to be involved in communication, social behavior and self-awareness. This phenomenon was confined to the left frontal and precentral gyrus. Our results imply that the wearing of a facemask could impact our ability to detect and react appropriately to salient stimuli by altering the functional connectivity of the SN.


2022 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Jayesh Gangrade ◽  
Hemang Shrivastava ◽  
Hare Ram Sah ◽  
Manoj Ramaiya

2021 ◽  
Vol 13 ◽  
Author(s):  
Viktória Kokošová ◽  
Pavel Filip ◽  
David Kec ◽  
Marek Baláž

Human brain aging is characterized by the gradual deterioration of its function and structure, affected by the interplay of a multitude of causal factors. The sleep, a periodically repeating state of reversible unconsciousness characterized by distinct electrical brain activity, is crucial for maintaining brain homeostasis. Indeed, insufficient sleep was associated with accelerated brain atrophy and impaired brain functional connectivity. Concurrently, alteration of sleep-related transient electrical events in senescence was correlated with structural and functional deterioration of brain regions responsible for their generation, implying the interconnectedness of sleep and brain structure. This review discusses currently available data on the link between human brain aging and sleep derived from various neuroimaging and neurophysiological methods. We advocate the notion of a mutual relationship between the sleep structure and age-related alterations of functional and structural brain integrity, pointing out the position of high-quality sleep as a potent preventive factor of early brain aging and neurodegeneration. However, further studies are needed to reveal the causality of the relationship between sleep and brain aging.


Author(s):  
Mukesh Kumar ◽  
Sadhana Singh ◽  
Poonam Rana ◽  
Shilpi Modi ◽  
Tarun Sekhri ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard B. Silberstein ◽  
David A. Camfield

AbstractCreative cognition is thought to involve two processes, the creation of new ideas and the selection and retention of suitable new ideas. Neuroimaging studies suggest that the Default Mode Network contributes to the creation of new ideas while left inferior frontal and parieto-temporal cortical networks mediate the selection/retention process. Higher levels of activity in the selection/retention have been shown to be associated with stricter criteria for selection and hence the expression of fewer novel ideas. In this study, we examined the brain functional connectivity correlates of an originality score while 27 males and 27 females performed a low and a high demand visual vigilance task. Brain functional connectivity was estimated from the steady state visual evoked potential event related partial coherence. In the male group, we observed a hypothesized left frontal functional connectivity that was negatively correlated with originality in both tasks. By contrast, in the female group no significant correlation between functional connectivity and originality was observed in either task. We interpret the findings to suggest that males and females engaged different functional networks when performing the vigilance tasks. We conclude with a consideration of the possible risks when data pooling across sex in studies of higher cortical function.


Sign in / Sign up

Export Citation Format

Share Document