Performance of dedicated breast positron emission tomography in the detection of small and low-grade breast cancer

Author(s):  
Satoshi Sueoka ◽  
Shinsuke Sasada ◽  
Norio Masumoto ◽  
Akiko Emi ◽  
Takayuki Kadoya ◽  
...  
2002 ◽  
Vol 97 ◽  
pp. 542-550 ◽  
Author(s):  
Marc Levivier ◽  
David Wikler ◽  
Nicolas Massager ◽  
Philippe David ◽  
Daniel Devriendt ◽  
...  

Object. The authors review their experience with the clinical development and routine use of positron emission tomography (PET) during stereotactic procedures, including the use of PET-guided gamma knife radiosurgery (GKS). Methods. Techniques have been developed for the routine use of stereotactic PET, and accumulated experience using PET-guided stereotactic procedures over the past 10 years includes more than 150 stereotactic biopsies, 43 neuronavigation procedures, and 34 cases treated with GKS. Positron emission tomography—guided GKS was performed in 24 patients with primary brain tumors (four pilocytic astrocytomas, five low-grade astrocytomas or oligodendrogliomas, seven anaplastic astrocytomas or ependymomas, five glioblastomas, and three neurocytomas), five patients with metastases (single or multiple lesions), and five patients with pituitary adenomas. Conclusions. Data obtained with PET scanning can be integrated with GKS treatment planning, enabling access to metabolic information with high spatial accuracy. Positron emission tomography data can be successfully combined with magnetic resonance imaging data to provide specific information for defining the target volume for the radiosurgical treatment in patients with recurrent brain tumors, such as glioma, metastasis, and pituitary adenoma. This approach is particularly useful for optimizing target selection for infiltrating or ill-defined brain lesions. The use of PET scanning contributed data in 31 cases (93%) and information that was specifically utilized to adapt the target volume in 25 cases (74%). It would seem that the integration of PET data into GKS treatment planning may represent an important step toward further developments in radiosurgery: this approach provides additional information that may open new perspectives for the optimization of the treatment of brain tumors.


2004 ◽  
Vol 91 (11) ◽  
pp. 1398-1409 ◽  
Author(s):  
A. M. Byrne ◽  
A. D. K. Hill ◽  
S. J. Skehan ◽  
E. W. McDermott ◽  
N. J. O'Higgins

2007 ◽  
Vol 68 (1) ◽  
pp. 19-23 ◽  
Author(s):  
H. Gumprecht ◽  
A. Grosu ◽  
M. Souvatsoglou ◽  
B. Dzewas ◽  
W. Weber ◽  
...  

2009 ◽  
Vol 27 (4) ◽  
pp. 535-541 ◽  
Author(s):  
Jörg Schwarz-Dose ◽  
Michael Untch ◽  
Reinhold Tiling ◽  
Stefanie Sassen ◽  
Sven Mahner ◽  
...  

Purpose To evaluate positron emission tomography (PET) using [18F]fluorodeoxyglucose (FDG) for prediction of histopathologic response early during primary systemic therapy of large or locally advanced breast cancer. Patients and Methods In a prospective multicenter trial, 272 FDG-PET scans were performed in 104 patients at baseline (n = 104) and after the first (n = 87) and second cycle (n = 81) of chemotherapy. The level and relative changes in standardized uptake value (SUV) of FDG uptake were assessed regarding their ability to predict histopathologic response. All patients underwent surgery after chemotherapy, and histopathologic response defined as minimal residual disease or gross residual disease served as the reference standard. Results Seventeen (16%) of 104 patients were histopathologic responders and 87 were (84%) nonresponders. All patients for whom baseline SUV was less than 3.0 (n = 24) did not achieve a histopathologic response. SUV decreased by 51% ± 18% after the first cycle of chemotherapy in histopathologic responders (n = 15), compared with 37% ± 21% in nonresponders (n = 54; P = .01). A threshold of 45% decrease in SUV correctly identified 11 of 15 responders, and histopathologic nonresponders were identified with a negative predictive value of 90%. Similar results were found after the second cycle when using a threshold of 55% relative decrease in SUV. Conclusion FDG-PET allows for prediction of treatment response by the level of FDG uptake in terms of SUV at baseline and after each cycle of chemotherapy. Moreover, relative changes in SUV after the first and second cycle are a strong predictor of response. Thus, FDG-PET may be helpful for individual treatment stratification in breast cancer patients.


Sign in / Sign up

Export Citation Format

Share Document