Catalytic Aquathermolysis of High-Viscosity Oil Using Iron, Cobalt, and Copper Tallates

2018 ◽  
Vol 53 (6) ◽  
pp. 905-912 ◽  
Author(s):  
D. A. Feoktistov ◽  
G. P. Kayukova ◽  
A. V. Vakhin ◽  
S. A. Sitnov
Author(s):  
I. I. Mukhamatdinov ◽  
◽  
E. E. Giniyatullina ◽  
R. E. Mukhamatdinova ◽  
O. V. Slavkina ◽  
...  

The article examines the aquathermolysis process of high viscosity oil from Strelovskoe field developed by RITEK LLC using steam injection. Laboratory modeling of non-catalytic and catalytic aquathermolysis in a high-pressure reactor was performed. Laboratory tests have demonstrated the high efficiency of the iron-based oil-soluble catalyst developed at Kazan Federal University in the destruction reactions of resinous asphaltenes. Samples of the initial oil as well as products of non-catalytic and catalytic aquathermolysis in the presence of iron tallate and the solvent Asphalt-Resin-Paraffin Deposits were studied at temperatures of 200, 250 and 300°C for 24 hours. In addition, the gas composition of the oil aquathermolysis products and the viscosity-temperature characteristics of the oil samples were determined. The studies have shown that catalytic aquathermolysis has a significant effect on the changes in the composition and properties of oil from the Strelovskoe field. It was found that the presence of a catalyst contributes to decarboxylation reactions, increases the degree of desulfurization and decreases the viscosity of oil samples. Keywords: high-viscosity oil; aquathermolysis; catalyst precursor; steam thermal treatment; viscosity.


2014 ◽  
Vol 698 ◽  
pp. 679-682
Author(s):  
Anastasia Markelova ◽  
Artem Trifonov ◽  
Valeria Olkhovskaya

The article offers a method to solve Buckley-Leverett’s problem, taking into account the nonlinear dependence of the filtration rate of viscoplastic oil on the pressure gradient. This method is based on the transformation of the fractional flow function by introducing in the theory of water drive the equations reflecting the rheological features of the oil flow. The resulting model allows us to quantify the influence of rheological factors on the completeness of the water-oil displacement and to calculate the performance, taking into account the component composition of the hydrocarbon phases. Taking the Samara Region oil fields as an example, the article shows that the quality of design is unsatisfactory when the bundled software being used does not take into account specific non-Newtonian properties of the high-viscosity oil.


Author(s):  
Stanislav A. Kalinin ◽  
◽  
Oleg A. Morozyuk ◽  

It is of current concern for the Permian-Carboniferous reservior of the Usinskoye field to develop low-permeable matrix blocks of carboniferous reservoirs, which contain major reserves of high-viscosity oil. To increase effectiveness of the currently used thermal oil recovery methods, the authors suggest using carbon dioxide as a reservoir stimulation agent. Due to a high mobility in its supercritical condition, СО2 is, theoretically, able to penetrate matrix blocks, dissolve in oil and, additionally, decrease its viscosity. Thus, СО2 applications together with a heat carrier could increase effectiveness of the high-viscosity oil recoveries and improve production parameters of the Permian-Carboniferous reservior of the Usinskoye field. During carbon dioxide injections, including combinations with various agents, some additional oil production is possible due to certain factors. Determination of the influencing factors and detection of the most critical ones is possible in laboratory tests. So, laboratory studies entail the key stage in justification of the technology effectiveness. The paper deals with describing the laboratory facilities and methodologies based on reviews of the best world practice and previous laboratory researches. These aim at evaluating effectiveness of thermal, gas and combined oil recovery enhancement methods. In particular, the authors explore experimental facilities and propose methodology to perform integrated researches of the combined heat carrier and carbon dioxide injection technology to justify the effective super-viscous oil recovery method.


2021 ◽  
Author(s):  
M.G. Persova ◽  
Yu.G. Soloveichik ◽  
A.S. Ovchinnikova ◽  
D.S. Kiselev ◽  
I.I. Patrushev

Sign in / Sign up

Export Citation Format

Share Document