A New Prediction Method for Flashing Parameters in Heavy Oil Production by Steam Flooding

2019 ◽  
Vol 54 (6) ◽  
pp. 781-787
Author(s):  
Yan Zhou ◽  
Chunsheng Wang ◽  
Qiji Sun
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zongyao Qi ◽  
Tong Liu ◽  
Changfeng Xi ◽  
Yunjun Zhang ◽  
Dehuang Shen ◽  
...  

It is challenging to enhance heavy oil recovery in the late stages of steam flooding. This challenge is due to reduced residual oil saturation, high steam-oil ratio, and lower profitability. A field test of the CO2-assisted steam flooding technique was carried out in the steam-flooded heavy oil reservoir in the J6 block of the Xinjiang oil field (China). In the field test, a positive response to the CO2-assisted steam flooding treatment was observed, including a gradually increasing heavy oil production, an increase in the formation pressure, and a decrease in the water cut. The production wells in the test area mainly exhibited four types of production dynamics, and some of the production wells exhibited production dynamics that were completely different from those during steam flooding. After being flooded via CO2-assisted steam flooding, these wells exhibited a gravity drainage pattern without steam channeling issues, and hence, they yielded stable oil production. In addition, emulsified oil and CO2 foam were produced from the production well, which agreed well with the results of laboratory-scale tests. The reservoir-simulation-based prediction for the test reservoir shows that the CO2-assisted steam flooding technique can reduce the steam-oil ratio from 12 m3 (CWE)/t to 6 m3 (CWE)/t and can yield a final recovery factor of 70%.


2016 ◽  
Vol 68 ◽  
pp. 07002 ◽  
Author(s):  
Suthon Srochviksit ◽  
Kreangkrai Maneeintr

2013 ◽  
Vol 827 ◽  
pp. 66-71 ◽  
Author(s):  
Jie Xiang Wang ◽  
Teng Fei Wang ◽  
ZeXia Fan

The steam stimulation is a main method to develop the heavy oil reservoir. However, the huff-puff wells will be water-flooded quickly if the reservoir has edge water, and the oil production level will decrease sharply. An experimental device, which can simulate edge water and steam stimulation process, was designed according to the feature of Henan heavy oil reservoir with edge water on the basis of steam flooding device, and the effect factors and application conditions of nitrogen foam anti-edge water-incursion technology were researched. The results show that the anti-edge water-incursion technology is suitable for the heavy oil reservoir with a medium energy edge water, and a better foam plugging will be got if the technology is applied at the time of serious water-flooded. The optimum injection pattern of the technology is a N2 slug first, followed by a nitrogen foam slug, and then the steam slug. Field tests were proceeded on the basis of experiment results and field experience, the operation success rate is 100%, the average drainage period reduces by 0.7d, the average cycle water cut reduces by 23%, the average cycle oil production increases by 2 times, and the average single-well oil-steam ratio increases by 0.25. So the technology can reduce water cut and increase oil production significantly, and the target of edge water inhibition is achieved.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xianhong Tan ◽  
Wei Zheng ◽  
Taichao Wang ◽  
Guojin Zhu ◽  
Xiaofei Sun ◽  
...  

The supercritical multithermal fluids (SCMTF) were developed for deep offshore heavy oil reservoirs. However, its EOR mechanisms are still unclear, and its numerical simulation method is deficient. In this study, a series of sandpack flooding experiments were first performed to investigate the viability of SCMTF flooding. Then, a novel numerical model for SCMTF flooding was developed based on the experimental results to characterize the flooding processes and to study the effects of injection parameters on oil recovery on a lab scale. Finally, the performance of SCMTF flooding in a practical deep offshore oil field was evaluated through simulation. The experiment results show that the SCMTF flooding gave the highest oil recovery of 80.89%, which was 29.60% higher than that of the steam flooding and 11.09% higher than that of SCW flooding. The history matching process illustrated that the average errors of 3.24% in oil recovery and of 4.33% in pressure difference confirm that the developed numerical model can precisely simulate the dynamic of SCMTF flooding. Increases in temperature, pressure, and the mole ratio of scN2 and scCO2 mixture to SCW benefit the heavy oil production. However, too much increase in temperature resulted in formation damage. In addition, an excess of scN2 and scCO2 contributed to an early SCMTF breakthrough. The field-scale simulation indicated that compared to steam flooding, the SCMTF flooding increased cumulative oil production by 27122 m3 due to higher reservoir temperature, expanded heating area, and lower oil viscosity, suggesting that the SCMTF flooding is feasible in enhancing offshore heavy oil recovery.


Author(s):  
A.T. Zaripov ◽  
◽  
D.K. Shaikhutdinov ◽  
Ya.V. Zakharov ◽  
A.A. Bisenova ◽  
...  

Petroleum ◽  
2021 ◽  
Author(s):  
Assef Mohamad-Hussein ◽  
Pablo Enrique Vargas Mendoza ◽  
Paolo Francesco Delbosco ◽  
Claudia Sorgi ◽  
Vincenzo De Gennaro ◽  
...  
Keyword(s):  

ChemInform ◽  
2015 ◽  
Vol 46 (48) ◽  
pp. no-no
Author(s):  
L. A. Gulyaeva ◽  
V. A. Khavkin ◽  
O. I. Shmel'kova ◽  
N. Ya. Vinogradova

Sign in / Sign up

Export Citation Format

Share Document