scholarly journals Progression and metastasis of small cell lung carcinoma: the role of the PI3K/Akt/mTOR pathway and metabolic alterations

Author(s):  
Ildiko Krencz ◽  
Daniel Sztankovics ◽  
Titanilla Danko ◽  
Anna Sebestyen ◽  
Andras Khoor

AbstractSmall cell lung carcinoma (SCLC) is characterized by high metastatic rate and poor prognosis. The platinum-based chemotherapy still represents the backbone of the therapy; however, acquired resistance develops almost in all patients. Although SCLC has been formerly considered a homogeneous disease, recent advances in SCLC research have highlighted the importance of inter- and intratumoral heterogeneity and have resulted in the subclassification of SCLC. The newly described SCLC subtypes are characterized by distinct biological behavior and vulnerabilities that can be therapeutically exploited. The PI3K/Akt/mTOR pathway is frequently affected in SCLC, and its activation represents a promising therapeutic target. Since the mTOR pathway is a master regulator of cellular metabolism, its alterations may also influence the bioenergetic processes of SCLC cells. Despite the encouraging preclinical results, both mTOR and metabolic inhibitors have met limited clinical success so far. Patient selection for personalized therapy, the development of rational drug combinations, and a better understanding of heterogeneity and spatiotemporal evolution of the tumor cells may improve efficacy and can help to overcome acquired resistance. Here we provide a summary of current investigations regarding the role of the mTOR pathway and metabolic alterations in the progression and metastasis formation of SCLC.

2019 ◽  
Vol 124 ◽  
pp. 98-100 ◽  
Author(s):  
V.V.V. Ravi Kiran Ammu ◽  
Kusuma Kumari Garikapati ◽  
Praveen T. Krishnamurthy ◽  
Pavan Kumar Chintamaneni ◽  
Sai Kiran S.S. Pindiprolu

Oncogenesis ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Shuang Lin ◽  
Rui Zhang ◽  
Xiaoxia An ◽  
Zhoubin Li ◽  
Cheng Fang ◽  
...  

Abstract Many studies have indicated that the aberrant expression of long noncoding RNAs (lncRNAs) is responsible for drug resistance, which represents a substantial obstacle for cancer therapy. In the present study, we aimed to investigate the role of the lncRNA HOXA-AS3 in drug resistance and elucidate its underlying mechanisms in non-small-cell lung carcinoma (NSCLC) cells. The role of HOXA-AS3 in drug resistance was demonstrated by the cell counting kit-8 assay (CCK-8), ethynyldeoxyuridine (EDU) assay, and flow cytometry analysis. Tumor xenografts in nude mice were established to evaluate the antitumor effects of HOXA-AS3 knockdown in vivo. Western blotting and quantitative real-time PCR were used to evaluate protein and RNA expression. RNA pull-down assays, mass spectrometry, and RNA immunoprecipitation were performed to confirm the molecular mechanism of HOXA-AS3 in the cisplatin resistance of NSCLC cells. We found that HOXA-AS3 levels increased with cisplatin treatment and knockdown of HOXA-AS3 enhance the efficacy of cisplatin in vitro and in vivo. Mechanistic investigations showed that HOXA-AS3 conferred cisplatin resistance by down-regulating homeobox A3 (HOXA3) expression. Moreover, HOXA-AS3 was demonstrated to interact with both the mRNA and protein forms of HOXA3. In addition, HOXA3 knockdown increased cisplatin resistance and induced epithelial-mesenchymal transition (EMT). Taken together, our findings suggested that additional research into HOXA-AS3 might provide a better understanding of the mechanisms of drug resistance and promote the development of a novel and efficient strategy to treat NSCLC.


Oncogene ◽  
2010 ◽  
Vol 30 (2) ◽  
pp. 234-244 ◽  
Author(s):  
R T Nitta ◽  
C A Del Vecchio ◽  
A H Chu ◽  
S S Mitra ◽  
A K Godwin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document