An Improved Catalytic Cracking of n-hexane via Methanol Coupling Reaction Over HZSM-5 Zeolite Catalysts

2006 ◽  
Vol 106 (3-4) ◽  
pp. 171-176 ◽  
Author(s):  
Fuxiang Chang ◽  
Yingxu Wei ◽  
Xianbin Liu ◽  
Yue Qi ◽  
Dazhi Zhang ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaoliang Liu ◽  
Jing Shi ◽  
Guang Yang ◽  
Jian Zhou ◽  
Chuanming Wang ◽  
...  

AbstractZeolite morphology is crucial in determining their catalytic activity, selectivity and stability, but quantitative descriptors of such a morphology effect are challenging to define. Here we introduce a descriptor that accounts for the morphology effect in the catalytic performances of H-ZSM-5 zeolite for C4 olefin catalytic cracking. A series of H-ZSM-5 zeolites with similar sheet-like morphology but different c-axis lengths were synthesized. We found that the catalytic activity and stability is improved in samples with longer c-axis. Combining time-resolved in-situ FT-IR spectroscopy with molecular dynamics simulations, we show that the difference in catalytic performance can be attributed to the anisotropy of the intracrystalline diffusive propensity of the olefins in different channels. Our descriptor offers mechanistic insight for the design of highly effective zeolite catalysts for olefin cracking.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 835
Author(s):  
Xia Xiao ◽  
Zhongliang Xu ◽  
Peng Wang ◽  
Xinfei Liu ◽  
Xiaoqiang Fan ◽  
...  

Solvent-free synthesis methodology is a promising technique for the green and sustainable preparation of zeolites materials. In this work, a solvent-free route was developed to synthesize SAPO-34 zeolite. The characterization results indicated that the crystal size, texture properties, acidity and Si coordination environment of the resulting SAPO-34 were tuned by adjusting the SiO2/Al2O3 molar ratio in the starting mixture. Moreover, the acidity of SAPO-34 zeolite was found to depend on the Si coordination environment, which was consistent with that of SAPO-34 zeolite synthesized by the hydrothermal method. At an SiO2/Al2O3 ratio of 0.6, the SP-0.6 sample exhibited the highest conversion of 1-butene (82.8%) and a satisfactory yield of light olefins (51.6%) in the catalytic cracking of 1-butene, which was attributed to the synergistic effect of the large SBET (425 m2/g) and the abundant acid sites (1.82 mmol/g). This work provides a new opportunity for the design of efficient zeolite catalysts for industrially important reactions.


RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20818-20828 ◽  
Author(s):  
Qi-tong Cheng ◽  
Ben-xian Shen ◽  
Hui Sun ◽  
Ji-gang Zhao ◽  
Ji-chang Liu

Exploring the relationship between the properties and catalytic reactivity of the Zn-modified high-silicon ZSM-5 in the methanol/naphtha coupling reaction and achieving the efficient utilization of naphtha.


Author(s):  
Jesus A Atias ◽  
Gabriela M Tonetto ◽  
Hugo Ignacio de Lasa

The complexity of a heavy gas oil feedstock and the multitude of reaction pathways have limited previous attempts to model fluid catalytic cracking (FCC). The demand for more detailed kinetic information motivates the use of pure components to first elucidate the dominant pathways and mechanisms and then determine the associated rate parameters, including adsorption constants and heats of adsorption. The aim of the present work is to evaluate adsorption constants and heats of adsorption, under FCC relevant reaction conditions. The experiments are carried out in a novel CREC Riser Simulator (batch reactor unit) using USY zeolite catalysts with different crystallite sizes (0.4 and 0.9 microns). This study confirms a special feature of the CREC Riser Simulator, as a valuable tool for the study of adsorption phenomena. Adsorption constants and heats of adsorption are evaluated for benzene, toluene, xylene and trimethylbenzene, at initial reaction conditions. Catalytic conversion experiments for 1,2,4-trimethylbenzene help to demonstrate the consistency of the determined adsorption parameters at various temperatures and reaction times. In addition, adsorption constants and heats of adsorption are found to be constant throughout the reaction time and the formation of coke does not hinder the adsorption of 1,2,4-TMB, although it significantly affects the reactivity of this model compound.


2013 ◽  
Vol 3 (4) ◽  
pp. 972 ◽  
Author(s):  
Cristina Martínez ◽  
Danny Verboekend ◽  
Javier Pérez-Ramírez ◽  
Avelino Corma

2020 ◽  
Vol 10 (1) ◽  
pp. 149-156
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi D. Anggoro ◽  
Andre W. S. Pakpahan ◽  
...  

The increase in energy demand led to the challenging of alternative fuel development. Biofuels from palm oil through catalytic cracking appear as a promising alternative fuel. In this study, biofuel was produced from palm oil through catalytic cracking using the modified HY zeolite catalysts. The Ni and Co metals were impregnated on the HY catalyst through the wet-impregnation method. The catalysts were characterized using X-ray fluorescence, X-ray diffraction, Brunauer–Emmett–Teller (BET), Pyridine-probed Fourier-transform infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM) methods. The biofuels product obtained was analyzed using a gas chromatography-mass spectrometry (GC-MS) method to determine its composition. The metal impregnation on the HY catalyst could modify the acid site composition (Lewis and Brønsted acid sites), which had significant roles in the palm oil cracking to biofuels. Ni impregnation on HY zeolite led to the high cracking activity, while the Co impregnation led to the high deoxygenation activity. Interestingly, the co-impregnation of Ni and Co on HY catalyst could increase the catalyst activity in cracking and deoxygenation reactions. The yield of biofuels could be increased from 37.32% to 40.00% by using the modified HY catalyst. Furthermore, the selectivity of gasoline could be achieved up to 11.79%. The Ni and Co metals impregnation on HY zeolite has a promising result on both the cracking and deoxygenation process of palm oil to biofuels due to the role of each metal. This finding is valuable for further catalyst development, especially on bifunctional catalyst development for palm oil conversion to biofuels.


Sign in / Sign up

Export Citation Format

Share Document