Long-period comets as a tracer of the Oort cloud structure

2020 ◽  
Vol 132 (8) ◽  
Author(s):  
Marc Fouchard ◽  
Vacheslav Emel’yanenko ◽  
Arika Higuchi
2006 ◽  
Vol 2 (S236) ◽  
pp. 43-54 ◽  
Author(s):  
Olga A. Mazeeva

AbstractThe dynamical evolution of 2⋅105 hypothetical Oort cloud comets by the action of planetary, galactic and stellar perturbations during 2⋅109 years is studied numerically. The evolution of comet orbits from the outer (104 AU <a<5⋅104 AU, a is semimajor axes) and the inner Oort cloud (5⋅103 AU <a<104 AU) to near-Earth space is investigated separately. The distribution of the perihelion (q) passage frequency in the planetary region is obtained calculating the numbers of comets in every interval of Δ q per year. The flux of long-period (LP) comets (orbital periods P>200 yr) with perihelion distances q<1.5 AU brighter than visual absolute magnitude H10=7 is ∼ 1.5 comets per year, and ∼18 comets with H10<10.9. The ratio of all LP comets with q<1.5 AU to ‘new’ comets is ∼5. The frequency of passages of LP comets from the inner Oort cloud through region q<1.5 AU is ∼3.5⋅10−13 yr−1, that is roughly one order of magnitude less than frequency of passages of LP comets from the outer cloud (∼5.28⋅10−12 yr−1). We show that the flux of ‘new’ comets with 15<q<31 AU is higher than with q<15 AU, by a factor ∼1.7 for comets from the outer Oort cloud and, by a factor ∼7 for comets from the inner cloud. The perihelia of comets from the outer cloud previously passed through the planetary region are predominated in the Saturn-Uranus region. The majority of inner cloud comets come in the outer solar system (q>15 AU), and a small fraction (∼0.01) of them can reach orbits with q<1.5 AU. The frequency of transfer of comets from the inner cloud (a<104 AU) to the outer Oort cloud (a>104 AU), from where they are injected to the region q<1.5 AU, is ∼6⋅10−14 yr−1.


1997 ◽  
Vol 822 (1 Near-Earth Ob) ◽  
pp. 67-95 ◽  
Author(s):  
PAUL R. WEISSMAN
Keyword(s):  

1985 ◽  
Vol 83 ◽  
pp. 11-17
Author(s):  
S. Yabushita

AbstractThe distribution of perihelion points of long-period comets is known to cluster towards the solar apex, and some authors ascribe it to north-south asymmetry in the distribution of observers. Validity or otherwise of this alleged selection effect is tested by randomly picking up the same number of perihelia in the southern (δ < 0) as those in the northern (δ > 0) hemisphere. It is shown that the observed clustering cannot be ascribed to the asymmetry of observers. Further, 67 comets which are new in Oort’s sense are tested similary. The character of their distribution is similar to that of all the known comets. It appears difficult to interpret the clustering in terms of a recent stellar disturbance of the Oort cloud.


2020 ◽  
Vol 633 ◽  
pp. A80 ◽  
Author(s):  
Małgorzata Królikowska

Context. The original 1∕a-distribution is the only observational basis for the origin of long-period comets (LPCs) and the dynamical properties of the Oort Cloud. Although they are very subtle in the motion of these comets, non-gravitational effects can cause major changes in the original semimajor axis, 1∕aori. Aims. We obtained reliable non-gravitational orbits for as many LPCs with small perihelion distances of q < 3.1 au as possible, and determined the corresponding shape of the Oort spike. Methods. We determined the osculating orbits of each comet using several data-processing methods, and selected the preferred orbit using a few specific criteria. The distribution of 1∕aori for the whole comet sample was constructed using the individual Gaussian distribution we obtained for the preferred solution of each comet. Results. The derived distribution of 1∕aori for almost all known small-perihelion Oort spike comets was based on 64% of the non-gravitational orbits. This was compared with the distribution based on purely gravitational orbits, as well as with 1∕aori constructed earlier for LPCs with q > 3.1 au. We present a statistical analysis of the magnitudes of the non-gravitational acceleration for about 100 LPCs. Conclusions. The 1∕aori-distribution, which is based mainly on the non-gravitational orbits of small-perihelion Oort spike comets, is shifted by about 10 × 10−6 au−1 to higher values of 1∕aori compared with the distribution that is obtained when the non-gravitational effects on comet motion are ignored. We show the differences in the 1∕aori-distributions between LPCs with q < 3.1 au and those with q > 3.1 au. These findings indicate the important role of non-gravitational acceleration in the motion and origin of LPCs and in the formation of the Oort Cloud.


2013 ◽  
Vol 49 (1) ◽  
pp. 8-20 ◽  
Author(s):  
Hans Rickman
Keyword(s):  

1996 ◽  
Vol 172 ◽  
pp. 209-212 ◽  
Author(s):  
J.Q. Zheng ◽  
M.J. Valtonen ◽  
S. Mikkola ◽  
H. Rickman

Investigators generally conjecture a steady flux of new comets from the Oort cloud through the inner Solar system. Due to gravitational perturbations by major planets these objects may escape, become long period comets (LPCs) if their orbital periods P are larger than 200yr or become short period comets (SPCs) when their period is less than 200yr. SPCs are further divided in two types: the Halley type comets (HT, for P > 20yr) and the Jupiter family comets (JF, for P < 20yr).


2021 ◽  
Vol 508 (1) ◽  
pp. 789-802
Author(s):  
Julio A Fernández ◽  
Pablo Lemos ◽  
Tabaré Gallardo

ABSTRACT We evaluate numerically three different models for the parent comet of the Kreutz family of sungrazers: (i) A Centaur on a highly inclined or retrograde orbit that diffuse to the inner planetary region where it became a sungrazer (Model 1). (ii) A parent comet injected from the Oort cloud straight into a near-parabolic, sungrazing orbit. Near perihelion the comet was disrupted by tidal forces from the Sun giving rise to a myriad of fragments that created the Kreutz family (Model 2). (iii) A two-step process by which an Oort cloud comet is first injected in a non-sungrazing, Earth-crossing orbit where its semimajor axis decreases from typical Oort cloud values (a ∼ 104 au) to around 102 au, and then it evolves to a sungrazing orbit by the Lidov–Kozai mechanism (Model 3). Model 1 fails to produce sungrazers of the Kreutz type. Model 2 produces some Kreutz sungrazers and has the appeal of being the most straightforward. Yet the impulses received by the fragments originated in the catastrophic disruption of the parent comet will tend to acquire a wide range of orbital energies or periods (from short-period to long-period orbits) that is in contradiction with the observations. Model 3 seems to be the most promising one since it leads to the generation of some sungrazers of the Kreutz type and, particularly, it reproduces the clustering of the argument of perihelion ω of the observed Kreutz family members around 60°–90°, as a natural consequence of the action of the Lidov–Kozai mechanism.


2018 ◽  
Vol 620 ◽  
pp. A45 ◽  
Author(s):  
Marc Fouchard ◽  
Arika Higuchi ◽  
Takashi Ito ◽  
Lucie Maquet

Aims. Our aim in this paper is to try to discover if we can find any record of the Oort cloud formation process in the orbital distribution of currently observable long-periodic comets. Methods. Long-term simulations of tens of millions of comets from two different kinds of proto-Oort clouds (isotropic and disk-like) were performed. In these simulations we considered the Galactic tides, stellar passage, and planetary perturbations. Results. In the case of an initially disk-like proto-Oort cloud, the final Oort cloud remains anisotroic inside of about 13 200 au. A record of the initial shape is preserved, here referred to as the “memory”, even on the final distribution of observable comets. This memory is measurable in particular for observable comets for which the previous perihelion was beyond 10 au and that were significantly affected by Uranus or Neptune at that moment (the so-called Kaib-Quinn jumpers observable class). Indeed, these comets are strongly concentrated along an extended scattered disk that is the remnant of the initial population 1 Gyr before the comets are observable. In addition, for this class of comets, the distributions of ecliptic inclination and Galactic longitude of the ascending node at the previous perihelion preceding the observable perihelion highlight characteristics that are not present in the isotropic model. Furthermore, the disk-like model produces four times more observable comets than the isotropic one, and its flux is independent of the initial distribution of orbital energy. Also for the disk-like model, the region beyond Neptune up to ~40 au gives the major contribution to the final flux of observable comets. Conclusions. The disk-like model sustains a flux of observable comets that are more consistent with the actually observed flux than using the isotropic model. However, further investigations are needed to reveal whether a fingerprint of the initial proto-Oort cloud, such as those highlighted in the present article, is present in the sample of known long-period comets.


1998 ◽  
Vol 11 (1) ◽  
pp. 223-228
Author(s):  
R. Malhotra

Ideas about the contents of the Solar System beyond Neptune and Pluto can be traced back to at least Edgeworth (1943, 1949) and Kuiper (1951), who speculated on the existence of pre-planetary small bodies in the outer Solar System beyond the orbit of Neptune - remnants of the accretion process in the primordial Solar Nebula. The basis for the speculation was primarily the argument that the Solar Nebula was unlikely to have been abruptly truncated at the orbit of Neptune, and that in the trans-Neptunian accretion timescales were too long for bodies larger than about ˜ 1000 km in radius to have formed in the 4.5 billion year age of the Solar System. Another important theoretical argument relevant to this region of the Solar System is related to the origin of short period comets. Fernández (1980) suggested that the short period comets may have an origin in a disk of small bodies beyond Neptune, rather than being “captured” from the population of long period comets originating in the Oort Cloud, the latter scenario having considerable difficulty reconciling the observed flux of short period comets with the exceedingly low efficiency of transfer of long period comet orbits to short period ones by means of the gravitational perturbations of the giant planets. The new scenario received further strength in the numerical work of Duncan et al. (1988) and Quinn et al. (1990) which showed that the relatively small orbital inclinations of the Jupiter-family short period comets were not consistent with a source in the isotropic Oort Cloud of comets but could be reproduced with a source in a low-inclination reservoir beyond Neptune’s orbit. Duncan et al. named this hypothetical source the Kuiper Belt, and the name has come into common use in the last decade (although other names are also in use, e.g. Edgeworth-Kuiper Belt, and trans-Neptunian objects). A recent theoretical milestone was the work by Holman and Wisdom (1993) and Levison and Duncan (1993) on the long term stability of test particle orbits in the trans-Neptunian Solar System. This work showed that low-eccentricity, low-inclination orbits with semimajor axes in excess of about 43 AU are stable on billion year timescales, but that in the region between 35 AU and 43 AU orbital stability times range from 107 yr to more than 109 yr [see, for example, figure 1 in Holman (1995)]. Orbital instability in this intermediate region typically leads to a close encounter with Neptune which causes dramatic orbital changes, with the potential for subsequent transfer to the inner Solar System. Thus, this region could in principle serve as the reservoir of short period comets at the present epoch. However, the idea of a kinematically cold — i.e. low-eccentricity, low-inclination — population in this region is at odds with recent observations, and the question of the origin of short period comets remains unsettled at the present time.


Sign in / Sign up

Export Citation Format

Share Document