Increased Working Memory Load in a Dual-Task Design Impairs Nonverbal Social Encoding in Children with High and Low Attention-Deficit/Hyperactivity Disorder Symptoms

2019 ◽  
Vol 51 (1) ◽  
pp. 127-137
Author(s):  
Dane C. Hilton ◽  
Matthew A. Jarrett ◽  
Ana T. Rondon ◽  
Josh Tutek ◽  
Mazheruddin M. Mulla



2007 ◽  
Vol 41 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Florence Levy

The purpose of the present paper was to review studies of two candidate genes for attention deficit–hyperactivity disorder (ADHD) and to separate aetiological from therapeutic effects. Genomic studies of ADHD were reviewed for candidate dopamine genes and studies selected to distinguish catechol-o-methyltransferase ( COMT) and dopamine transporter ( DAT-1) effects. Pharmacogenomic findings for the COMT gene were in agreement with the 1977 observations of Sprague and Sleator, who reported that at low psychostimulant doses, children with ADHD showed a remarkable improvement on a short-term memory test at all levels of task load, whereas at higher doses, there was a significant decrement in performance on the more difficult versions of the task, corresponding to an ‘inverted ‘U’ shaped curve’. Recent studies show that individuals with the homozygous COMT (valine/valine) genotype demonstrated improvement following psychostimulant treatment, because their tonic dopamine (DA) levels were low, whereas the homozygous COMT (methionine/methionine) individuals, who already have high initial prefrontal cortex (PFC) dopamine levels performed more poorly after medication, in tasks with high working memory load. On the other hand aetiological findings for DAT-1 gene were heterogenous, but more often positive than for COMT. Contrasting findings for COMT and DAT-1 may best be considered in terms of prediction of medication response in ADHD in the case of COMT, but in aetiological terms in the case of DAT-1, which is abundant in the striatum and possibly plays a greater role in determining hyperactivity and impulsivity, than working memory deficiencies.



2019 ◽  
Author(s):  
Stefan Huijser ◽  
Niels Anne Taatgen ◽  
Marieke K. van Vugt

Preparing for the future during ongoing activities is an essential skill. Yet, it is currently unclear to what extent we can prepare for the future in parallel with another task. In two experiments, we investigated how characteristics of a present task influenced whether and when participants prepared for the future, as well as its usefulness. We focused on the influence of concurrent working memory load, assuming that working memory would interfere most strongly with preparation. In both experiments, participants performed a novel sequential dual-task paradigm, in which they could voluntary prepare for a second task while performing a first task. We identified task preparation by means of eye tracking, through detecting when participants switched their gaze from the first to the second task. The results showed that participants prepared productively, as evidenced by faster RTs on the second task, with only a small cost to the present task. The probability of preparation and its productiveness decreased with general increases in present task difficulty. In contrast to our prediction, we found some but no consistent support for influence of concurrent working memory load on preparation. Only for concurrent high working memory load (i.e., two items in memory), we observed strong interference with preparation. We conclude that preparation is affected by present task difficulty, potentially due to decreased opportunities for preparation and changes in multitasking strategy. Furthermore, the interference from holding two items may reflect that concurrent preparation is compromised when working memory integration is required by both processes.



2015 ◽  
Vol 22 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Ashley N. Simone ◽  
Anne-Claude V. Bédard ◽  
David J. Marks ◽  
Jeffrey M. Halperin

AbstractThe aim of this study was to examine working memory (WM) modalities (visual-spatial and auditory-verbal) and processes (maintenance and manipulation) in children with and without attention-deficit/hyperactivity disorder (ADHD). The sample consisted of 63 8-year-old children with ADHD and an age- and sex-matched non-ADHD comparison group (N=51). Auditory-verbal and visual-spatial WM were assessed using the Digit Span and Spatial Span subtests from the Wechsler Intelligence Scale for Children Integrated - Fourth Edition. WM maintenance and manipulation were assessed via forward and backward span indices, respectively. Data were analyzed using a 3-way Group (ADHD vs. non-ADHD)×Modality (Auditory-Verbal vs. Visual-Spatial)×Condition (Forward vs. Backward) Analysis of Variance (ANOVA). Secondary analyses examined differences between Combined and Predominantly Inattentive ADHD presentations. Significant Group×Condition (p=.02) and Group×Modality (p=.03) interactions indicated differentially poorer performance by those with ADHD on backward relative to forward and visual-spatial relative to auditory-verbal tasks, respectively. The 3-way interaction was not significant. Analyses targeting ADHD presentations yielded a significant Group×Condition interaction (p=.009) such that children with ADHD-Predominantly Inattentive Presentation performed differentially poorer on backward relative to forward tasks compared to the children with ADHD-Combined Presentation. Findings indicate a specific pattern of WM weaknesses (i.e., WM manipulation and visual-spatial tasks) for children with ADHD. Furthermore, differential patterns of WM performance were found for children with ADHD-Predominantly Inattentive versus Combined Presentations. (JINS, 2016, 22, 1–11)



2015 ◽  
Vol 233 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Hanneke van Ewijk ◽  
Wouter D. Weeda ◽  
Dirk J. Heslenfeld ◽  
Marjolein Luman ◽  
Catharina A. Hartman ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Moreno-Alcázar ◽  
Josep A. Ramos-Quiroga ◽  
Marta Ribases ◽  
Cristina Sánchez-Mora ◽  
Gloria Palomar ◽  
...  

AbstractPrevious studies have shown that the gene encoding the adhesion G protein-coupled receptor L3 (ADGRL3; formerly latrophilin 3, LPHN3) is associated with Attention-Deficit/Hyperactivity Disorder (ADHD). Conversely, no studies have investigated the anatomical or functional brain substrates of ADGRL3 risk variants. We examined here whether individuals with different ADGRL3 haplotypes, including both patients with ADHD and healthy controls, showed differences in brain anatomy and function. We recruited and genotyped adult patients with combined type ADHD and healthy controls to achieve a sample balanced for age, sex, premorbid IQ, and three ADGRL3 haplotype groups (risk, protective, and others). The final sample (n = 128) underwent structural and functional brain imaging (voxel-based morphometry and n-back working memory fMRI). We analyzed the brain structural and functional effects of ADHD, haplotypes, and their interaction, covarying for age, sex, and medication. Individuals (patients or controls) with the protective haplotype showed strong, widespread hypo-activation in the frontal cortex extending to inferior temporal and fusiform gyri. Individuals (patients or controls) with the risk haplotype also showed hypo-activation, more focused in the right temporal cortex. Patients showed parietal hyper-activation. Disorder-haplotype interactions, as well as structural findings, were not statistically significant. To sum up, both protective and risk ADGRL3 haplotypes are associated with substantial brain hypo-activation during working memory tasks, stressing this gene’s relevance in cognitive brain function. Conversely, we did not find brain effects of the interactions between adult ADHD and ADGRL3 haplotypes.



2017 ◽  
Vol 126 (6) ◽  
pp. 774-792 ◽  
Author(s):  
Sarah L. Karalunas ◽  
Hanna C. Gustafsson ◽  
Nathan F. Dieckmann ◽  
Jessica Tipsord ◽  
Suzanne H. Mitchell ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document