scholarly journals Integrated assessment of China’s adaptive capacity to climate change with a capital approach

2014 ◽  
Vol 128 (3-4) ◽  
pp. 367-380 ◽  
Author(s):  
Minpeng Chen ◽  
Fu Sun ◽  
Pam Berry ◽  
Rob Tinch ◽  
Hui Ju ◽  
...  
Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 106
Author(s):  
Demamu Mesfin ◽  
Belay Simane ◽  
Abrham Belay ◽  
John W. Recha ◽  
Ute Schmiedel

This paper explores the different components of the adaptive capacity of households in the Central Rift Valley (CRV) of Ethiopia and quantifies their relative contributions. The data were derived from a survey of 413 households randomly selected from four Kebeles (the smallest government administrative units) in the CRV. The adaptive capacity of the households was assessed using the Local Adaptive Capacity (LAC) framework and measured in terms of both aggregate and composite indices, with sixty indicators distributed across five major components and subcomponents. The index score for major components shows that intangible variables such as institutions and entitlements, knowledge and information, and innovation contributed to adaptive capacity better than decision–making and governance and asset–base. The composite indices for sub–components showed that the contribution of woodlands to adaptive capacity was positive and superior to other natural assets. Grazing land was the next best contributor, while farmland and water resources made a much lower contribution. The findings of this study are useful to better understand the nature of adaptive capacity and its components at the household level. This study suggests the need for an integrated assessment and enhancement of adaptive capacity with all its components rather than focusing only on asset possession as an indicator of adaptive capacity.


2020 ◽  
Author(s):  
Carl-Friedrich Schleussner ◽  
Martha M. Vogel ◽  
Peter Pfleiderer ◽  
Marina Andrijevic ◽  
Friederike E. Otto ◽  
...  

<p>Heat extremes are among the most pertinent extreme weather hazards. At the same time, adaptation to the impacts of extreme heat can be very effective. The ability of societies to effectively adapt to climate change hazards such as extreme heat, however, critically depends on their level of socio-economic development. Examining the risks posed by future heat extremes to human societies requires to link socio-economic development trajectories with emerging heat extremes. Such an integrated assessment can also provide insights into whether or not it is indeed plausible for societies to “outgrow” climate change by increasing adaptive capacity faster than climate impacts emerge -  a narrative that underlies many policy decisions that prioritize economic development over climate action still today.</p><p> </p><p>Here we provide such an integrated assessment by combining a novel approach to project the continuous emergence of heat extremes over the 21<sup>st</sup> century under different concentration pathways and the pace of socio-economic development under the shared socio-economic pathways accounting for continuous autonomous adaptation. We find that even under the most optimistic scenarios of future development, countries may not be able to outpace unmitigated climate change. Only Paris-Agreement compatible concentration pathways allow for human development to keep up with or even outpace the emerging climate change signal in vulnerable countries in the near future. A similar picture emerges when comparing heat day emergence with future evolution of governance as a proxy for adaptive capacity. Our findings underscore the critical importance of achieving the Paris Agreement goals to enable climate-resilient, sustainable development.</p>


Author(s):  
Claire S. Teitelbaum ◽  
Alexej P. K. Sirén ◽  
Ethan Coffel ◽  
Jane R. Foster ◽  
Jacqueline L. Frair ◽  
...  

2021 ◽  
Vol 166 (1-2) ◽  
Author(s):  
Charlie Wilson ◽  
Céline Guivarch ◽  
Elmar Kriegler ◽  
Bas van Ruijven ◽  
Detlef P. van Vuuren ◽  
...  

AbstractProcess-based integrated assessment models (IAMs) project long-term transformation pathways in energy and land-use systems under what-if assumptions. IAM evaluation is necessary to improve the models’ usefulness as scientific tools applicable in the complex and contested domain of climate change mitigation. We contribute the first comprehensive synthesis of process-based IAM evaluation research, drawing on a wide range of examples across six different evaluation methods including historical simulations, stylised facts, and model diagnostics. For each evaluation method, we identify progress and milestones to date, and draw out lessons learnt as well as challenges remaining. We find that each evaluation method has distinctive strengths, as well as constraints on its application. We use these insights to propose a systematic evaluation framework combining multiple methods to establish the appropriateness, interpretability, credibility, and relevance of process-based IAMs as useful scientific tools for informing climate policy. We also set out a programme of evaluation research to be mainstreamed both within and outside the IAM community.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Leclerc ◽  
Franck Courchamp ◽  
Céline Bellard

Abstract Despite their high vulnerability, insular ecosystems have been largely ignored in climate change assessments, and when they are investigated, studies tend to focus on exposure to threats instead of vulnerability. The present study examines climate change vulnerability of islands, focusing on endemic mammals and by 2050 (RCPs 6.0 and 8.5), using trait-based and quantitative-vulnerability frameworks that take into account exposure, sensitivity, and adaptive capacity. Our results suggest that all islands and archipelagos show a certain level of vulnerability to future climate change, that is typically more important in Pacific Ocean ones. Among the drivers of vulnerability to climate change, exposure was rarely the main one and did not explain the pattern of vulnerability. In addition, endemic mammals with long generation lengths and high dietary specializations are predicted to be the most vulnerable to climate change. Our findings highlight the importance of exploring islands vulnerability to identify the highest climate change impacts and to avoid the extinction of unique biodiversity.


Sign in / Sign up

Export Citation Format

Share Document