scholarly journals Future climate change vulnerability of endemic island mammals

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Camille Leclerc ◽  
Franck Courchamp ◽  
Céline Bellard

Abstract Despite their high vulnerability, insular ecosystems have been largely ignored in climate change assessments, and when they are investigated, studies tend to focus on exposure to threats instead of vulnerability. The present study examines climate change vulnerability of islands, focusing on endemic mammals and by 2050 (RCPs 6.0 and 8.5), using trait-based and quantitative-vulnerability frameworks that take into account exposure, sensitivity, and adaptive capacity. Our results suggest that all islands and archipelagos show a certain level of vulnerability to future climate change, that is typically more important in Pacific Ocean ones. Among the drivers of vulnerability to climate change, exposure was rarely the main one and did not explain the pattern of vulnerability. In addition, endemic mammals with long generation lengths and high dietary specializations are predicted to be the most vulnerable to climate change. Our findings highlight the importance of exploring islands vulnerability to identify the highest climate change impacts and to avoid the extinction of unique biodiversity.

2018 ◽  
Vol 163 ◽  
pp. 171-185 ◽  
Author(s):  
Ying Li ◽  
Ting Ren ◽  
Patrick L. Kinney ◽  
Andrew Joyner ◽  
Wei Zhang

Időjárás ◽  
2019 ◽  
Vol 123 (3) ◽  
pp. 351-370 ◽  
Author(s):  
Aleksandar Janković ◽  
Zorica Podraščanin ◽  
Vladimir Djurdjevic

2019 ◽  
Vol 116 (21) ◽  
pp. 10418-10423 ◽  
Author(s):  
Orly Razgour ◽  
Brenna Forester ◽  
John B. Taggart ◽  
Michaël Bekaert ◽  
Javier Juste ◽  
...  

Local adaptations can determine the potential of populations to respond to environmental changes, yet adaptive genetic variation is commonly ignored in models forecasting species vulnerability and biogeographical shifts under future climate change. Here we integrate genomic and ecological modeling approaches to identify genetic adaptations associated with climate in two cryptic forest bats. We then incorporate this information directly into forecasts of range changes under future climate change and assessment of population persistence through the spread of climate-adaptive genetic variation (evolutionary rescue potential). Considering climate-adaptive potential reduced range loss projections, suggesting that failure to account for intraspecific variability can result in overestimation of future losses. On the other hand, range overlap between species was projected to increase, indicating that interspecific competition is likely to play an important role in limiting species’ future ranges. We show that although evolutionary rescue is possible, it depends on a population’s adaptive capacity and connectivity. Hence, we stress the importance of incorporating genomic data and landscape connectivity in climate change vulnerability assessments and conservation management.


2014 ◽  
Vol 9 (10) ◽  
pp. 104006 ◽  
Author(s):  
B Sultan ◽  
K Guan ◽  
M Kouressy ◽  
M Biasutti ◽  
C Piani ◽  
...  

2016 ◽  
Vol 164 ◽  
pp. 317-330 ◽  
Author(s):  
Pradip Adhikari ◽  
Srinivasulu Ale ◽  
James P. Bordovsky ◽  
Kelly R. Thorp ◽  
Naga R. Modala ◽  
...  

Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 523 ◽  
Author(s):  
Thi Nguyen ◽  
Laura Mula ◽  
Raffaele Cortignani ◽  
Giovanna Seddaiu ◽  
Gabriele Dono ◽  
...  

2015 ◽  
Vol 39 (1) ◽  
pp. 49-67 ◽  
Author(s):  
Christopher R. Jackson ◽  
John P. Bloomfield ◽  
Jonathan D. Mackay

We examine the evidence for climate-change impacts on groundwater levels provided by studies of the historical observational record, and future climate-change impact modelling. To date no evidence has been found for systematic changes in groundwater drought frequency or intensity in the UK, but some evidence of multi-annual to decadal coherence of groundwater levels and large-scale climate indices has been found, which should be considered when trying to identify any trends. We analyse trends in long groundwater level time-series monitored in seven observation boreholes in the Chalk aquifer, and identify statistically significant declines at four of these sites, but do not attempt to attribute these to a change in a stimulus. The evidence for the impacts of future climate change on UK groundwater recharge and levels is limited. The number of studies that have been undertaken is small and different approaches have been adopted to quantify impacts. Furthermore, these studies have generally focused on relatively small regions and reported local findings. Consequently, it has been difficult to compare them between locations. We undertake some additional analysis of the probabilistic outputs of the one recent impact study that has produced coherent multi-site projections of changes in groundwater levels. These results suggest reductions in annual and average summer levels, and increases in average winter levels, by the 2050s under a high greenhouse gas emissions scenario, at most of the sites modelled, when expressed by the median of the ensemble of simulations. It is concluded, however, that local hydrogeological conditions can be an important control on the simulated response to a future climate projection.


Hydrology ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 21 ◽  
Author(s):  
Ansoumana Bodian ◽  
Alain Dezetter ◽  
Lamine Diop ◽  
Abdoulaye Deme ◽  
Koffi Djaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document