Downscaling future climate change projections over Puerto Rico using a non-hydrostatic atmospheric model

2018 ◽  
Vol 147 (1-2) ◽  
pp. 133-147 ◽  
Author(s):  
Amit Bhardwaj ◽  
Vasubandhu Misra ◽  
Akhilesh Mishra ◽  
Adrienne Wootten ◽  
Ryan Boyles ◽  
...  
2018 ◽  
Vol 2 (3) ◽  
pp. 477-497 ◽  
Author(s):  
Syed Ahsan Ali Bokhari ◽  
Burhan Ahmad ◽  
Jahangir Ali ◽  
Shakeel Ahmad ◽  
Haris Mushtaq ◽  
...  

2020 ◽  
Author(s):  
Deniz Bozkurt ◽  
David H. Bromwich ◽  
Roberto Rondanelli

<p>This study assesses the recent (1990-2015) and near future (2020-2045) climate change in the Antarctic Peninsula. For the recent period, we make the use of available observations, ECMWF’s ERA5 and its predecessor ERA-Interim, as well as regional climate model simulations. Given the different climate characteristics at each side of the mountain barrier, we principally assess the results considering the windward and leeward sides. We use hindcast simulations performed with Polar-WRF over the Antarctic Peninsula on a nested domain configuration at 45 km (PWRF-45) and 15 km (PWRF-15) spatial resolutions for the period 1990-2015. In addition, we include hindcast simulations of KNMI-RACMO21P obtained from the CORDEX-Antarctica domain (~ 50 km) for further comparisons. For the near future climate change evaluation, we principally use historical simulations and climate change projections (until 2050s, RCP85) performed with PWRF (forced with NCAR-CESM1) on the same domain configuration of the hindcast simulations. Recent observed trends show contrasts between summer and autumn. Annual warming (cooling) trend is notable on the windward (leeward) coasts of the peninsula. Unlike the reanalysis, numerical simulations indicate a clear pattern of windward warming and leeward cooling at annual time-scale. These temperature changes are accompanied by a decreasing and increasing trend in sea ice on the windward and leeward coasts, respectively. An increasing trend of precipitation is notable on the central and northern peninsula. High resolution climate change projections (PWRF-15, RCP85) indicate that the recent warming trend on the windward coasts tends to continue in the near future (2020-2045) and the projections exhibit an increase in temperature by ~ 1.5°C and 0.5°C on the windward and leeward coasts, respectively. In the same period, the projections show an increase in precipitation over the peninsula (5% to 10%). The more notable warming projected on the windward side causes more increases in surface melting (~ +20% to +80%) and more sea ice loss (-4% to -20%) on this side. Results show that the windward coasts of central and northern Antarctic Peninsula can be considered as "hotspots" with notable increases in temperature, surface melting and sea ice loss.</p>


2017 ◽  
Vol 189 ◽  
pp. 87-97 ◽  
Author(s):  
William Baule ◽  
Barry Allred ◽  
Jane Frankenberger ◽  
Debra Gamble ◽  
Jeff Andresen ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Gerhard Krinner ◽  
Viatcheslav Kharin ◽  
Romain Roehrig ◽  
John Scinocca ◽  
Francis Codron

Abstract Climate models and/or their output are usually bias-corrected for climate impact studies. The underlying assumption of these corrections is that climate biases are essentially stationary between historical and future climate states. Under very strong climate change, the validity of this assumption is uncertain, so the practical benefit of bias corrections remains an open question. Here, this issue is addressed in the context of bias correcting the climate models themselves. Employing the ARPEGE, LMDZ and CanAM4 atmospheric models, we undertook experiments in which one centre’s atmospheric model takes another centre’s coupled model as observations during the historical period, to define the bias correction, and as the reference under future projections of strong climate change, to evaluate its impact. This allows testing of the stationarity assumption directly from the historical through future periods for three different models. These experiments provide evidence for the validity of the new bias-corrected model approach. In particular, temperature, wind and pressure biases are reduced by 40–60% and, with few exceptions, more than 50% of the improvement obtained over the historical period is on average preserved after 100 years of strong climate change. Below 3 °C global average surface temperature increase, these corrections globally retain 80% of their benefit.


2010 ◽  
Vol 36 (7-8) ◽  
pp. 1303-1319 ◽  
Author(s):  
Moetasim Ashfaq ◽  
Christopher B. Skinner ◽  
Noah S. Diffenbaugh

Sign in / Sign up

Export Citation Format

Share Document