scholarly journals Septin 6 localizes to microtubules in neuronal dendrites

2012 ◽  
Vol 65 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Il Soo Moon ◽  
HyunSook Lee ◽  
Randall S. Walikonis
Keyword(s):  
Cell Reports ◽  
2021 ◽  
Vol 36 (10) ◽  
pp. 109678
Author(s):  
May Bakr ◽  
Damien Jullié ◽  
Julia Krapivkina ◽  
Vincent Paget-Blanc ◽  
Lou Bouit ◽  
...  

2019 ◽  
Author(s):  
Hanna L. Zieger ◽  
Stella-Amrei Kunde ◽  
Nils Rademacher ◽  
Bettina Schmerl ◽  
Sarah A. Shoichet

AbstractScaffold proteins are responsible for structural organisation within cells; they form complexes with other proteins to facilitate signalling pathways and catalytic reactions. The scaffold protein connector enhancer of kinase suppressor of Ras 2 (CNK2) is predominantly expressed in neural tissues and was recently implicated in X-linked intellectual disability (ID). We have investigated the role of CNK2 in neurons in order to contribute to our understanding of how CNK2 alterations might cause developmental defects, and we have elucidated a functional role for CNK2 in the molecular processes that govern morphology of the postsynaptic density (PSD). We have also identified novel CNK2 interaction partners and explored their functional interdependency with CNK2. We focussed on the novel interaction partner TRAF2- and NCK-interacting kinase TNIK, which is also associated with ID. Both CNK2 and TNIK are expressed in neuronal dendrites and concentrated in dendritic spines, and staining with synaptic markers indicates a clear postsynaptic localisation. Importantly, our data highlight that CNK2 plays a role in directing TNIK subcellular localisation, and in neurons, CNK2 participates in ensuring that this multifunctional kinase is present at desirable levels at synaptic sites. In summary, our data indicate that CNK2 expression is critical for modulating PSD morphology; moreover, our study highlights a role for CNK2 in directing the localisation of regulatory proteins within the cell. Importantly, we describe a novel link between CNK2 and the regulatory kinase TNIK, and provide evidence supporting the idea that these proteins play complementary roles in the regulation of dendritic spine growth and maintenance.


2018 ◽  
Author(s):  
Sarah A. Middleton ◽  
James Eberwine ◽  
Junhyong Kim

AbstractRNA localization to neuronal dendrites is critical step for long-lasting synaptic potentiation, but there is little consensus regarding which RNAs are localized and the role of alternative isoforms in localization. Using independent RNA-sequencing from soma and dendrites of the same neuron, we deeply profiled the sub-cellular transcriptomes to assess the extent and variability of dendritic RNA localization in individual hippocampal neurons, including an assessment of differential localization of alternative 3’UTR isoforms. We identified 2,225 dendritic RNAs, including 298 cases of 3’UTR isoform-specific localization. We extensively analyzed the localized RNAs for potential localization motifs, finding that B1 and B2 SINE elements are up to 5.7 times more abundant in localized RNA 3’UTRs than non-localized, and also functionally characterized the localized RNAs using protein structure analysis. Finally, we integrate our list of localized RNAs with the literature to provide a comprehensive list of known dendritically localized RNAs as a resource.


2018 ◽  
Author(s):  
Anne-Sophie Hafner ◽  
Paul G. Donlin-Asp ◽  
Beulah Leitch ◽  
Etienne Herzog ◽  
Erin M. Schuman

AbstractThere is ample evidence for localized mRNAs and protein synthesis in neuronal dendrites, however, demonstrations of these processes in presynaptic terminals are limited. We used expansion microscopy to resolve pre- and postsynaptic compartments in brain slices. Most presynaptic terminals in the hippocampus and forebrain contained mRNA and ribosomes. We sorted fluorescently labeled synaptosomes from mouse brain and then sequenced hundreds of mRNA species present within excitatory boutons. After brief metabolic labeling, more them 30% of all presynaptic terminals exhibited a signal, providing evidence for ongoing protein synthesis. We tested different classic plasticity paradigms and observed unique patterns of rapid pre- and/or postsynaptic translation. Thus presynaptic terminals are translationally competent and local protein synthesis is differentially recruited to drive compartment-specific phenotypes that underlie different forms of plasticity.One sentence summaryProtein synthesis occurs in all synaptic compartments, including excitatory and inhibitory axon terminals.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Seokchan Yoon ◽  
Hojun Lee ◽  
Jin Hee Hong ◽  
Yong-Sik Lim ◽  
Wonshik Choi

AbstractA mouse skull is a barrier for high-resolution optical imaging because its thick and inhomogeneous internal structures induce complex aberrations varying drastically from position to position. Invasive procedures creating either thinned-skull or open-skull windows are often required for the microscopic imaging of brain tissues underneath. Here, we propose a label-free imaging modality termed laser scanning reflection-matrix microscopy for recording the amplitude and phase maps of reflected waves at non-confocal points as well as confocal points. The proposed method enables us to find and computationally correct up to 10,000 angular modes of aberrations varying at every 10 × 10 µm2 patch in the sample plane. We realized reflectance imaging of myelinated axons in vivo underneath an intact mouse skull, with an ideal diffraction-limited spatial resolution of 450 nm. Furthermore, we demonstrated through-skull two-photon fluorescence imaging of neuronal dendrites and their spines by physically correcting the aberrations identified from the reflection matrix.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 493 ◽  
Author(s):  
Fengyi Liang

The pseudostratified olfactory epithelium (OE) may histologically appear relatively simple, but the cytological relations among its cell types, especially those between olfactory receptor neurons (ORNs) and olfactory sustentacular cells (OSCs), prove more complex and variable than previously believed. Adding to the complexity is the short lifespan, persistent neurogenesis, and continuous rewiring of the ORNs. Contrary to the common belief that ORN dendrites are mostly positioned between OSCs, recent findings indicate a sustentacular cell enwrapped configuration for a majority of mature ORN dendrites at the superficial layer of the OE. After vertically sprouting out from the borderlines between OSCs, most of the immature ORN dendrites undergo a process of sideways migration and terminal maturation to become completely invaginated into and enwrapped by OSCs. Trailing the course of the dendritic sideways migration is the mesodendrite (mesentery of the enwrapped dendrite) made of closely apposed, cell junction connected plasma membrane layers of neighboring folds of the host sustentacular cell. Only a minority of the mature ORN dendrites at the OE apical surface are found at the borderlines between OSCs (unwrapped). Below I give a brief update on the cytoarchitectonic relations between the ORNs and OSCs of the OE. Emphasis is placed on the enwrapment of ORN dendrites by OSCs, on the sideways migration of immature ORN dendrites after emerging from the OE surface, and on the terminal maturation of the ORNs. Functional implications of ORN dendrite enwrapment and a comparison with myelination or Remak’s bundling of axons or axodendrites in the central and peripheral nervous system are also discussed.


2003 ◽  
Vol 23 (26) ◽  
pp. 8859-8866 ◽  
Author(s):  
Jianguo Shan ◽  
Trent P. Munro ◽  
Elisa Barbarese ◽  
John H. Carson ◽  
Ross Smith

Sign in / Sign up

Export Citation Format

Share Document