scholarly journals Combinatorial invariants for nets of conics in $$\mathrm {PG}(2,q)$$

Author(s):  
Michel Lavrauw ◽  
Tomasz Popiel ◽  
John Sheekey

AbstractThe problem of classifying linear systems of conics in projective planes dates back at least to Jordan, who classified pencils (one-dimensional systems) of conics over $${\mathbb {C}}$$ C and $$\mathbb {R}$$ R in 1906–1907. The analogous problem for finite fields $$\mathbb {F}_q$$ F q with q odd was solved by Dickson in 1908. In 1914, Wilson attempted to classify nets (two-dimensional systems) of conics over finite fields of odd characteristic, but his classification was incomplete and contained some inaccuracies. In a recent article, we completed Wilson’s classification (for q odd) of nets of rank one, namely those containing a repeated line. The aim of the present paper is to introduce and calculate certain combinatorial invariants of these nets, which we expect will be of use in various applications. Our approach is geometric in the sense that we view a net of rank one as a plane in $$\mathrm {PG}(5,q)$$ PG ( 5 , q ) , q odd, that meets the quadric Veronesean in at least one point; two such nets are then equivalent if and only if the corresponding planes belong to the same orbit under the induced action of $$\mathrm {PGL}(3,q)$$ PGL ( 3 , q ) viewed as a subgroup of $$\mathrm {PGL}(6,q)$$ PGL ( 6 , q ) . Since q is odd, the orbits of lines in $$\mathrm {PG}(5,q)$$ PG ( 5 , q ) under this action correspond to the aforementioned pencils of conics in $$\mathrm {PG}(2,q)$$ PG ( 2 , q ) . The main contribution of this paper is to determine the line-orbit distribution of a plane $$\pi $$ π corresponding to a net of rank one, namely, the number of lines in $$\pi $$ π belonging to each line orbit. It turns out that this list of invariants completely determines the orbit of $$\pi $$ π , and we will use this fact in forthcoming work to develop an efficient algorithm for calculating the orbit of a given net of rank one. As a more immediate application, we also determine the stabilisers of nets of rank one in $$\mathrm {PGL}(3,q)$$ PGL ( 3 , q ) , and hence the orbit sizes.

2021 ◽  
Vol 143 (2) ◽  
pp. 301-335
Author(s):  
Jendrik Voss ◽  
Ionel-Dumitrel Ghiba ◽  
Robert J. Martin ◽  
Patrizio Neff

AbstractWe consider the volumetric-isochoric split in planar isotropic hyperelasticity and give a precise analysis of rank-one convexity criteria for this case, showing that the Legendre-Hadamard ellipticity condition separates and simplifies in a suitable sense. Starting from the classical two-dimensional criterion by Knowles and Sternberg, we can reduce the conditions for rank-one convexity to a family of one-dimensional coupled differential inequalities. In particular, this allows us to derive a simple rank-one convexity classification for generalized Hadamard energies of the type $W(F)=\frac{\mu }{2} \hspace{0.07em} \frac{\lVert F \rVert ^{2}}{\det F}+f(\det F)$ W ( F ) = μ 2 ∥ F ∥ 2 det F + f ( det F ) ; such an energy is rank-one convex if and only if the function $f$ f is convex.


2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Hong Shi ◽  
Guangming Xie ◽  
Desheng Liu

The analysis of chaotic attractor generation is given, and the generation of novel chaotic attractor is introduced in this paper. The underlying mechanism involves two simple linear systems with one-dimensional, two-dimensional, or three-dimensional space functions. Moreover, it is demonstrated by simulation that various attractor patterns are generated conveniently by adjusting suitable space functions' parameters and the statistic behavior is also discussed.


Author(s):  
Manuel Duarte Ortigueira ◽  
José Tenreiro Machado

This paper reviews the unilateral and bilateral, one- and two-dimensional Laplace transforms. The unilateral and bilateral Laplace transforms are compared in the one-dimensional case, leading to the formulation of the initial-condition theorem. This problem is solved with all generality in the one- and two-dimensional cases with the bilateral Laplace transform. General two-dimensional linear systems are introduced and the corresponding transfer function defined.


2013 ◽  
Vol 681 ◽  
pp. 55-59
Author(s):  
Wen Jeng Liu

Abstract. A controller gain design problem of two-dimensional (2-D) linear systems is proposed in this paper. For one-dimensional (1-D) systems, the necessary and sufficient conditions have been established for the problem, and an analytical solution for the feedback gain is given by [1]. Based on the existing 1-D analytical solution, a 2-D state feedback controller gain can be designed to achieve the desired poles. Finally, two numerical examples are shown to exhibit the validity of the proposed approach.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1330 ◽  
Author(s):  
Manuel Duarte Ortigueira ◽  
José Tenreiro Machado

The paper reviews the unilateral and bilateral, one- and two-dimensional Laplace transforms. The unilateral and bilateral Laplace transforms are compared in the one-dimensional case, leading to the formulation of the initial-condition theorem. This problem is solved with all generality in the one- and two-dimensional cases with the bilateral Laplace transform. The case of fractional-order systems is also included. General two-dimensional linear systems are introduced and the corresponding transfer function is defined.


1996 ◽  
Vol 06 (12a) ◽  
pp. 2299-2319 ◽  
Author(s):  
CHRISTIAN MIRA ◽  
CHRISTINE RAUZY ◽  
YURI MAISTRENKO ◽  
IRINA SUSHKO

Properties of a piecewise-linear noninvertible map of the plane are studied by using the method of critical curves (two-dimensional extension of the notion of critical point in the one-dimensional case). This map is of (Z0–Z2) type, i.e. the plane consists of a region without preimage, and a region giving rise to two rank one preimages. For the considered parameter values, the map has two saddle fixed points. The characteristic features of the “mixed chaotic area” generated by this map, and its bifurcations (some of them being of homoclinic and heteroclinic type) are examined. Such an area is bounded by the union of critical curves segments and segments of the unstable set of saddle cycles.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 241-261 ◽  
Author(s):  
P A Krenkel ◽  
R H French

The state-of-the-art of surface water impoundment modeling is examined from the viewpoints of both hydrodynamics and water quality. In the area of hydrodynamics current one dimensional integral energy and two dimensional models are discussed. In the area of water quality, the formulations used for various parameters are presented with a range of values for the associated rate coefficients.


Sign in / Sign up

Export Citation Format

Share Document