scholarly journals Chaotic Attractor Generation via Space Function Controls

2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
Hong Shi ◽  
Guangming Xie ◽  
Desheng Liu

The analysis of chaotic attractor generation is given, and the generation of novel chaotic attractor is introduced in this paper. The underlying mechanism involves two simple linear systems with one-dimensional, two-dimensional, or three-dimensional space functions. Moreover, it is demonstrated by simulation that various attractor patterns are generated conveniently by adjusting suitable space functions' parameters and the statistic behavior is also discussed.

2019 ◽  
Vol 7 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Л. Жихарев ◽  
L. Zhikharev

Reflection from a certain mirror is one of the main types of transformations in geometry. On a plane a mirror represents a straight line. When reflecting, we obtain an object, each point of which is symmetric with respect to this straight line. In this paper have been considered examples of reflection from a circle – a general case of a straight line, if the latter is defined through a circle of infinite radius. While analyzing a simple reflection and generalization of this process to the cases of such curvature of the mirror, an interesting phenomenon was found – an increase in the reflection dimension by one, that is, under reflection of a one-dimensional object from the circle, a two-dimensional curve is obtained. Thus, under reflection of a point from the circle was obtained the family of Pascal's snails. The main cases, related to reflection from a circular mirror the simplest two-dimensional objects – a segment and a circle at their various arrangement, were also considered. In these examples, the reflections are two-dimensional objects – areas of bizarre shape, bounded by sections of curves – Pascal snails. The most interesting is the reflection of two-dimensional objects on a plane, because the reflection is too informative to fit in the appropriate space. To represent the models of obtained reflections, it was proposed to move into three-dimensional space, and also developed a general algorithm allowing obtain the object reflection from the curved mirror in the space of any dimension. Threedimensional models of the reflections obtained by this algorithm have been presented. This paper reveals the prospects for further research related to transition to three-dimensional space and reflection of objects from a spherical surface (possibility to obtain four-dimensional and five-dimensional reflections), as well as studies of reflections from geometric curves in the plane, and more complex surfaces in space.


Author(s):  
Helena Bidnichenko

The paper presents a method for geometric modelling of a four-dimensional ball. For this, the regularities of the change in the shape of the projections of simple geometric images of two-dimensional and three-dimensional spaces during rotation are considered. Rotations of a segment and a circle around an axis are considered; it is shown that during rotation the shape of their projections changes from the maximum value to the degenerate projection. It was found that the set of points of the degenerate projection belongs to the axis of rotation, and each n-dimensional geometric image during rotation forms a body of a higher dimension, that is, one that belongs to (n + 1) -dimensional space. Identified regularities are extended to the four-dimensional space in which the ball is placed. It is shown that the axis of rotation of the ball will be a degenerate projection in the form of a circle, and the ball, when rotating, changes its size from a volumetric object to a flat circle, then increases again, but in the other direction (that is, it turns out), and then in reverse order to its original position. This rotation is more like a deformation, and such a ball of four-dimensional space is a hypersphere. For geometric modelling of the hypersphere and the possibility of its projection image, the article uses the vector model proposed by P.V. Filippov. The coordinate system 0xyzt is defined. The algebraic equation of the hypersphere is given by analogy with the three-dimensional space along certain coordinates of the center a, b, c, d. A variant of hypersection at t = 0 is considered, which confirms by equations obtaining a two-dimensional ball of three-dimensional space, a point (a ball of zero radius), which coincides with the center of the ball, or an imaginary ball. For the variant t = d, the equation of a two-dimensional ball is obtained, in which the radius is equal to R and the coordinates of all points along the 0t axis are equal to d. The variant of hypersection t = k turned out to be interesting, in which the equation of a two-dimensional sphere was obtained, in which the coordinates of all points along the 0t axis are equal to k, and the radius is . Horizontal vector projections of hypersection are constructed for different values of k. It is concluded that the set of horizontal vector projections of hypersections at t = k defines an ellipse.  


2015 ◽  
Vol 11 (9) ◽  
pp. 47
Author(s):  
Feng Wu ◽  
Jiang Zhu ◽  
Yilong Tian ◽  
Zhipeng Xi

Network capacity has been widely studied in recent years. However, most of the literatures focus on the networks where nodes are distributed in a two-dimensional space. In this paper, we propose a 3D hybrid sensor network model. By setting different sensor node distribution probabilities for cells, we divide all the cells in the network into dense cells and sparse cells. Analytical expressions of the aggregate throughput capacity are obtained. We also find that suitable inhomogeneity can increase the network throughput capacity.


2013 ◽  
Vol 36 (5) ◽  
pp. 569-570 ◽  
Author(s):  
Homare Yamahachi ◽  
May-Britt Moser ◽  
Edvard I. Moser

AbstractThe suggestion that three-dimensional space is represented by a mosaic of neural map fragments, each covering a small area of space in the plane of locomotion, receives support from studies in complex two-dimensional environments. How map fragments are linked, which brain circuits are involved, and whether metric is preserved across fragments are questions that remain to be determined.


2013 ◽  
Vol 48 (4) ◽  
pp. 141-145 ◽  
Author(s):  
Bartlomiej Oszczak ◽  
Eliza Sitnik

ABSTRACT During the process of satellite navigation, and also in the many tasks of classical positioning, we need to calculate the corrections to the initial (or approximate) location of the point using precise measurement of distances to the permanent points of reference (reference points). In this paper the authors have provided a way of developing Hausbrandt's equations, on the basis of which the exact coordinates of the point in two-dimensional space can be determined by using the computed correction to the coordinates of the auxiliary point. The authors developed generalised equations for threedimensional space introducing additional fixed point and have presented proof of derived formulas.


2015 ◽  
Vol 92 (4) ◽  
Author(s):  
Merlin A. Etzold ◽  
Peter J. McDonald ◽  
David A. Faux ◽  
Alexander F. Routh

2004 ◽  
Vol 18 (25) ◽  
pp. 1301-1309 ◽  
Author(s):  
ANDREI DOLOCAN ◽  
VOICU OCTAVIAN DOLOCAN ◽  
VOICU DOLOCAN

By using a new Hamiltonian of interaction we have calculated the interaction energy for two-dimensional and three-dimensional lattices. We present also, approximate analytical formulae and the analytical formulae for the constant of the elastic force. The obtained results show that in the three-dimensional space, the two-dimensional lattice has the lattice constant and the cohesive energy which are smaller than that of the three-dimensional lattice. For appropriate values of the coupling constants, the two-dimensional lattice in a two-dimensional space has both the lattice constant and the cohesive energy, larger than that of the two-dimensional lattice in a three-dimensional space; this means that if there is a two-dimensional space in the Universe, this should be thinner than the three-dimensional space, while the interaction forces should be stronger. On the other hand, if the coupling constant in the two-dimensional lattice in the two-dimensional space is close to zero, the cohesive energy should be comparable with the cohesive energy from three-dimensional space but this two-dimensional space does not emit but absorbs radiation.


Sign in / Sign up

Export Citation Format

Share Document