scholarly journals Valuing Climate Change Effects Upon UK Agricultural GHG Emissions: Spatial Analysis of a Regulating Ecosystem Service

2013 ◽  
Vol 57 (2) ◽  
pp. 215-231 ◽  
Author(s):  
David J Abson ◽  
Mette Termansen ◽  
Unai Pascual ◽  
Uzma Aslam ◽  
Carlo Fezzi ◽  
...  
2019 ◽  
Vol 156 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Gabriel Rondeau-Genesse ◽  
Marco Braun

Abstract The pace of climate change can have a direct impact on the efforts required to adapt. For short timescales, however, this pace can be masked by internal variability (IV). Over a few decades, this can cause climate change effects to exceed what would be expected from the greenhouse gas (GHG) emissions alone or, to the contrary, cause slowdowns or even hiatuses. This phenomenon is difficult to explore using ensembles such as CMIP5, which are composed of multiple climate models and thus combine both IV and inter-model differences. This study instead uses CanESM2-LE and CESM-LE, two state-of-the-art large ensembles (LE) that comprise multiple realizations from a single climate model and a single GHG emission scenario, to quantify the relationship between IV and climate change over the next decades in Canada and the USA. The mean annual temperature and the 3-day maximum and minimum temperatures are assessed. Results indicate that under the RCP8.5, temperatures within most of the individual large ensemble members will increase in a roughly linear manner between 2021 and 2060. However, members of the large ensembles in which a slowdown of warming is found during the 2021–2040 period are two to five times more likely to experience a period of very fast warming in the following decades. The opposite scenario, where the changes expected by 2050 would occur early because of IV, remains fairly uncommon for the mean annual temperature, but occurs in 5 to 15% of the large ensemble members for the temperature extremes.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yuquan W. Zhang ◽  
Bruce A. McCarl

The challenges and opportunities facing today's agriculture within the climate change context are at least twofold: in addition to adapting to a potentially more variable climate, agriculture may also take on the addition role of mitigating GHG emissions—such as providing renewable fuels to replace fossil fuels to some extent. For the US, a large-scale GHG mitigation effort through biofuels production pursuant to the Renewable Fuel Standard (RFS2) is already unfolding. A question thus naturally arises for the RFS2-relevant US agricultural sector: will climate change make it harder to meet the volume goals set in the RFS2 mandates, considering that both climate change and RFS2 may have significant impacts on US agriculture? The agricultural component of FASOMGHG that models the land use allocation within the conterminous US agricultural sector is employed to investigate the effects of climate change (with autonomous adaptation at farm level), coupled with RFS2, on US agriculture. The analysis shows that climate change eases the burden of meeting the RFS2 mandates increasing consumer welfare while decreasing producer welfare. The results also show that climate change encourages a more diversified use of biofuel feedstocks for cellulosic ethanol production, in particular crop residues.


2016 ◽  
Vol 39 ◽  
pp. 89-92 ◽  
Author(s):  
Luca Alberti ◽  
Martino Cantone ◽  
Loris Colombo ◽  
Gabriele Oberto ◽  
Ivana La Licata

2012 ◽  
Author(s):  
Ronald Filadelfo ◽  
Jonathon Mintz ◽  
Daniel Carvell ◽  
Alan Marcus

2019 ◽  
Vol 11 (18) ◽  
pp. 4998 ◽  
Author(s):  
Federica Borgonovo ◽  
Cecilia Conti ◽  
Daniela Lovarelli ◽  
Valentina Ferrante ◽  
Marcella Guarino

Ammonia (NH3), methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions from livestock farms contribute to negative environmental impacts such as acidification and climate change. A significant part of these emissions is produced from the decomposition of slurry in livestock facilities, during storage and treatment phases. This research aimed at evaluating the effectiveness of the additive “SOP LAGOON” (made of agricultural gypsum processed with proprietary technology) on (i) NH3 and Greenhouse Gas (GHG) emissions, (ii) slurry properties and N loss. Moreover, the Life Cycle Assessment (LCA) method was applied to assess the potential environmental impact associated with stored slurry treated with the additive. Six barrels were filled with 65 L of cattle slurry, of which three were used as a control while the additive was used in the other three. The results indicated that the use of the additive led to a reduction of total nitrogen, nitrates, and GHG emissions. LCA confirmed the higher environmental sustainability of the scenario with the additive for some environmental impact categories among which climate change. In conclusion, the additive has beneficial effects on both emissions and the environment, and the nitrogen present in the treated slurry could partially displace a mineral fertilizer, which can be considered an environmental credit.


Sign in / Sign up

Export Citation Format

Share Document