Spent lubricant oil-contaminated soil toxicity to Eisenia andrei before and after bioremediation

Ecotoxicology ◽  
2019 ◽  
Vol 28 (2) ◽  
pp. 212-221 ◽  
Author(s):  
Sanye Soroldoni ◽  
Graciane Silva ◽  
Fabio Veríssimo Correia ◽  
Marcia Marques
2006 ◽  
Vol 72 (1) ◽  
pp. 28-36 ◽  
Author(s):  
A. D'Annibale ◽  
F. Rosetto ◽  
V. Leonardi ◽  
F. Federici ◽  
M. Petruccioli

ABSTRACT Nine fungal strains isolated from an aged and heavily contaminated soil were identified and screened to assess their degradative potential. Among them, Allescheriella sp. strain DABAC 1, Stachybotrys sp. strain DABAC 3, and Phlebia sp. strain DABAC 9 were selected for remediation trials on the basis of Poly R-478 decolorization associated with lignin-modifying enzyme (LME) production. These autochthonous fungi were tested for the abilities to grow under nonsterile conditions and to degrade various aromatic hydrocarbons in the same contaminated soil. After 30 days, fungal colonization was clearly visible and was confirmed by ergosterol determination. In spite of subalkaline pH conditions and the presence of heavy metals, the autochthonous fungi produced laccase and Mn and lignin peroxidases. No LME activities were detected in control microcosms. All of the isolates led to a marked removal of naphthalene, dichloroaniline isomers, o-hydroxybiphenyl, and 1,1′-binaphthalene. Stachybotrys sp. strain DABAC 3 was the most effective isolate due to its ability to partially deplete the predominant contaminants 9,10-anthracenedione and 7H-benz[DE]anthracen-7-one. A release of chloride ions was observed in soil treated with either Allescheriella sp. strain DABAC 1 or Stachybotrys sp. strain DABAC 3, suggesting the occurrence of oxidative dehalogenation. The autochthonous fungi led to a significant decrease in soil toxicity, as assessed by both the Lepidium sativum L. germination test and the Collembola mortality test.


2020 ◽  
Vol 42 (10) ◽  
pp. 482-492
Author(s):  
Keong-Hyeon An ◽  
Songhee Kim ◽  
Seung-Woo Jeong

Objectives : Changes in soil properties after washing of metal-contaminated soil near the former Janghang Smelter were investigated in this study. Contaminated input soils and remediated output soils were sampled from three different soil washing plants and analyzed for soil physical and chemical properties. Soil quality was evaluated by the soil fertilization guideline suggested by the Korea Rural Development Administration (KRDA). This study revealed the necessity of soil quality management for the remediated soil as an ecosystem member.Methods : Three soil washing plants (1OU, 2OU, 3OU) were commonly divided into the five steps: 1) the particle separation (crushing and grinding etc.) → 2) soil particle classification (big stone, fine soil, minimal fine soil) → 3) chemical washing (fine soil) → 4) neutralization of washed soil (lime) → 5) return-back to the original position. The separating minimum particle diameters of the 1OU, 2OU, and 3OU washing processes were 5 µm, 20 µm, and 10 µm, respectively, and the chemical washing solutions used were respectively 0.1 M H2SO4, 0.5 M H2SO4/0.5 M H3PO4, and 0.1 N NaOH-Na2CO3 (alkali reduction). Soils were collected before and after washing, air-dried, sieved with < 2 mm and analyzed for soil texture, bulk density, aggregate stability (AS), water holding capacity (WHC), pH, electrical conductivity (EC), organic matter content (OM), total nitrogen (TN), available phosphate (AvP), cation exchange capacity (CEC), exchangeable cations (potassium, calcium, magnesium, sodium).Results and Discussion : Sandy soil showed a big change in soil texture before and after soil washing, while there was no change in soil texture for fine soil. Sandy soil showed an increase in bulk density, a decrease in WHC, and a decrease in AS. The pH of remediated soil was affected by the type of washing chemical. The acidic washing processes (1OU, 2OU) resulted in low pH soils, while an alkali reduction process (3OU) showed high pH soil. The soil OM, TN, AvP and CEC decreased after soil washing. In the case of silty paddy soil, OM and TN were significantly reduced by washing. The most important change in soil property after washing was EC. After soil washing, the soil electrical conductivity increased sharply in all OUs : 1OU 0.51 → 6.21 ds/m, 2OU 1.09 → 3.73 ds/m, 3OU 0.99 → 9.30 ds/m. The EC values of the contaminated soil before washing were all less than 2 ds/m, which is an appropriate agricultural level. However, EC was significantly increased after washing, implying a strong salty soil level. The soil quality evaluation results before and after washing showed that the soil quality of heavy-metal contaminated soil was apparently degraded by washing. The number of soil property in the optimal range before washing (contaminated soil) was 10, but the number decreased to 5 after washing (remediated soil).Conclusions : Soil quality may be significantly changed after soil washing. The most noticeable change was the significant increase in the EC of soil and the soil health should be restored first to recycle the remediated soil. The important causes of changes in the soil quality were the separation of fine soil particles containing relatively high heavy metals from the bulk soil, soil disturbance by chemical washing solution and addition of high salts such as coagulants and pH adjust. Soil management schemes considering soil health should be soon prepared to restore the remediated soil back as an ecosystem member.


Chemosphere ◽  
2016 ◽  
Vol 161 ◽  
pp. 119-126 ◽  
Author(s):  
Primož Zidar ◽  
Monika Kos ◽  
Katarina Vogel-Mikuš ◽  
Johannes Teun van Elteren ◽  
Marta Debeljak ◽  
...  

Author(s):  
Angelique Belfroid ◽  
Martin van den Berg ◽  
Willem Seinen ◽  
Joop Hermens ◽  
Kees van Gestel

2002 ◽  
Vol 2 (4) ◽  
pp. 194-202 ◽  
Author(s):  
Kati Vaajasaari ◽  
Anneli Joutti ◽  
Eija Schultz ◽  
Salla Selonen ◽  
Henrik Westerholm

2021 ◽  
Author(s):  
Jūratė Česynaitė ◽  
Marius Praspaliauskas ◽  
Nerijus Pedišius ◽  
Gintare Sujetoviene

Abstract The contamination in shooting range soils is widely know ecological problem around the world. The aim of this study was to investigate the toxic effects of contaminated shooting range soil on physiological and biochemical endpoints of Eisenia fetida . A shooting range located in Alytus, Lithuania was chosen as a object to assess the site–specific soil toxicity to earthworm E. fetida . The elevated concentrations of Pb, Cu, Fe, Ni, Mn, Zn in soil was found along with lower organic matter content and higher soil density, especially closer to the target line. Significant weight loss was observed in earthworms exposed to soil of the most contaminated shooting range site. Significantly higher concentrations of Pb, Cu, Fe, Ni, Sb was determined in the tissues of adult worms from the very end of the shooting range. No juveniles were observed in the most contaminated soil, higher concentrations of Pb, Cu, Fe, Mn, Zn were found in the tissues of juveniles exposed to the contaminated soil of study sites were concentrations of lead were lower compared to the most contaminated site, but higher compared to control. Exposure to contaminated soil caused antioxidant system alterations and lipid peroxidation. It was observed a compensatory mechanism between the activities of GR and glutathione S-transferase (GST) under trace elements induced toxicity.


Sign in / Sign up

Export Citation Format

Share Document