soil washing
Recently Published Documents


TOTAL DOCUMENTS

575
(FIVE YEARS 147)

H-INDEX

49
(FIVE YEARS 10)

Author(s):  
Hyunsoo Kim ◽  
Kanghee Cho ◽  
Oyunbileg Purev ◽  
Nagchoul Choi ◽  
Jaewon Lee

Based on the features of hydrodynamic cavitation, in this study, we developed a washing ejector that utilizes a high-pressure water jet. The cavitating flow was utilized to remove fine particles from contaminated soil. The volume of the contaminants and total metal concentration could be correlated to the fine-particle distribution in the contaminated soil. These particles can combine with a variety of pollutants. In this study, physical separation and soil washing as a two-step soil remediation strategy were performed to remediate contaminated soils from the smelter. A washing ejector was employed for physical separation, whereas phosphoric acid was used as the washing agent. The particles containing toxic heavy metals were composed of metal phase encapsulated in phyllosilicates, and metal phase weakly bound to phyllosilicate surfaces. The washing ejector involves the removal of fine particles bound to coarse particles and the dispersion of soil aggregates. From these results we determined that physical separation using a washing ejector was effective for the treatment of contaminated soil. Phosphoric acid (H3PO4) was effective in extracting arsenic from contaminated soil in which arsenic was associated with amorphous iron oxides. Thus, the obtained results can provide useful information and technical support for field soil washing for the remediation of soil contaminated by toxic heavy metals through emissions from the mining and ore processing industries.


Environments ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Liliana Cepoi ◽  
Inga Zinicovscaia ◽  
Ana Valuta ◽  
Liviu Codreanu ◽  
Ludmila Rudi ◽  
...  

Anthropogenic activity is the main factor contributing to soil pollution with various toxic metals, including Cr(VI), which dictates the need for decontamination. Often, the traditionally used remediation methods (soil removal, stabilization/solidification, physicochemical extraction, and soil washing) are not sufficiently efficient. Among gentle soil remediation, options can be considered. The aim of this study is to assess the ability of Nostoc linckia to remediate soils contaminated with Cr(VI) in association with other metals. Metal uptake by biomass was assessed using neutron activation analysis, while the components of Nostoc biomass were determined using specific methods. The capacity to accumulate chromium from the contaminated environment (Cr in association with Fe, Ni, Cu, and Zn) by the Nostoc linckia is kept at a high level for three generations of cyanobacterium, and the capacity to accumulate Fe, Ni, Cu, and Zn is growing over the cultivation cycles. The process of accumulation of heavy metals is associated with significant changes in the biochemical composition of Nostoc biomass. Due to the high bioaccumulation capacity and the specific growth mode with the formation of crusts on the soil surface, the edaphic cyanobacteria Nostoc linckia is an important candidate for the bioremediation of soil contaminated with chromium in association with other metals.


2021 ◽  
Vol 12 (1) ◽  
pp. 26-38
Author(s):  
Dharitri Ramanlal ◽  
Rita Kumar ◽  
Nirmal Kumar ◽  
Rashmi Thakkar

This paper revises the fundamental facts about potentially toxic elements belonging to the group of heavy metals. The study highlights the ongoing soil pollution status affected by these non-biodegradable elements, the basic characteristics of these metals that make them toxic, their mode of accumulation in different trophic levels, their toxic effect on human beings and the probable remediation technologies being used to remediate soils contaminated with heavy metal when the pollution problem has evolved. The technologies focused on solidification, soil washing, soil flushing, electro-kinetic remediation and phytoremediation are presented. The choice of the technology to be used for remediation depends on the condition of the soil and the extent of contamination. Conventional electro-kinetics is the most effective and rapid technology, but on the scale of ecosystem restoration, phytoremediation is an eco-friendly, green and cost-effective solution.


Author(s):  
Fuzhen Liu ◽  
Jinjin Zhao ◽  
Yanyan Ma ◽  
Zhengzhi Liu ◽  
Yin Xu ◽  
...  

2021 ◽  
Vol 25 (6) ◽  
pp. 100962
Author(s):  
Karyn Nathallye de Oliveira Silva ◽  
Manuel Andrés Rodrigo ◽  
Elisama Vieira dos Santos

Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 319
Author(s):  
Jin-Wook Kim ◽  
Young-Kyu Hong ◽  
Hyuck-Soo Kim ◽  
Eun-Ji Oh ◽  
Yong-Ha Park ◽  
...  

Soil washing and landfarming processes are widely used to remediate total petroleum hydrocarbon (TPH)-contaminated soil, but the impact of these processes on soil bacteria is not well understood. Four different states of soil (uncontaminated soil (control), TPH-contaminated soil (CS), after soil washing (SW), and landfarming (LF)) were collected from a soil remediation facility to investigate the impact of TPH and soil remediation processes on soil bacterial populations by metagenomic analysis. Results showed that TPH contamination reduced the operational taxonomic unit (OTU) number and alpha diversity of soil bacteria. Compared to SW and LF remediation techniques, LF increased more bacterial richness and diversity than SW, indicating that LF is a more effective technique for TPH remediation in terms of microbial recovery. Among different bacterial species, Proteobacteria were the most abundant in all soil groups followed by Actinobacteria, Acidobacteria, and Firmicutes. For each soil group, the distribution pattern of the Proteobacteria class was different. The most abundant classed were Alphaproteobacteria (16.56%) in uncontaminated soils, Deltaproteobacteria (34%) in TPH-contaminated soils, Betaproteobacteria (24%) in soil washing, and Gammaproteobacteria (24%) in landfarming, respectively. TPH-degrading bacteria were detected from soil washing (23%) and TPH-contaminated soils (21%) and decreased to 12% in landfarming soil. These results suggest that soil pollution can change the diversity of microbial groups and different remediation techniques have varied effective ranges for recovering bacterial communities and diversity. In conclusion, the landfarming process of TPH remediation is more advantageous than soil washing from the perspective of bacterial ecology.


2021 ◽  
Vol 11 (22) ◽  
pp. 10956
Author(s):  
Jing Dong ◽  
Qi Sun ◽  
Xue Zhang ◽  
Yuan Zhou ◽  
Longchao Xia ◽  
...  

In China, arable soils contaminated with cadmium (Cd) threaten human health. Ferric chloride (FeCl3) is a highly efficient agent that can remove Cd from contaminated soils. However, it is unknown whether FeCl3 damages the soil structure and consequently affects crop growth. In this study, we investigated the impacts of Cd extraction by FeCl3 on the structure of a paddy soil on the basis of comparisons of control (without washing agents) and hydrochloric acid (HCl) treatments. According to our results, the removal efficiency increased with the decrease in soil initial pH, as adjusted by FeCl3. However, the low pH of 2.0 caused a partial loss of soil mineral components, with an Al release of 4.4% in the FeCl3-treated soil versus 1.3% in the HCl-treated soil. In contrast, the amount of released Al was less than 0.2% in the control and in the FeCl3 treatments with initial pH values of 3.0 and 4.0. The washing agents caused soil TOC loss of 27.1%, 17.5%, and 2.76% in the pH 2.0, 3.0, and 4.0 FeCl3 treatments, compared with 15.5% in the initial pH 2.0 HCl treatment. The use of FeCl3 represents an optimum tradeoff between removal efficiency and the loss of soil components to restore Cd-polluted soils by adjusting the initial pH to 3.0 with the addition of FeCl3. Under this condition, the amount of Al loss was less than 0.2%, and the extraction efficiency reached 40.3%, compared to an efficiency of 39.7% with HCl at an initial pH of 2.0. In conclusion, FeCl3 could effectively remove Cd from contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document