A method to determine the combined effects of climate change (temperature and humidity) and eggshell thickness on water loss from bird eggs

2019 ◽  
Vol 42 (3) ◽  
pp. 781-793 ◽  
Author(s):  
L.-m. Veldsman ◽  
H. Kylin ◽  
P. Bronkhorst ◽  
I. Engelbrecht ◽  
H. Bouwman
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


1981 ◽  
Vol 54 (2) ◽  
pp. 195-202 ◽  
Author(s):  
James R. Spotila ◽  
Christina J. Weinheimer ◽  
Charles V. Paganelli

2021 ◽  
Vol 43 (2) ◽  
pp. 137
Author(s):  
Matthew Mo ◽  
Mike Roache

Heat stress events in Australian flying-fox camps have resulted in significant numbers of flying-fox deaths. The frequency and intensity of such events have increased in recent decades, attributed to anthropogenic climate change. Evidence-based interventions are required to address this growing threat. Responders currently use different combinations of a range of intervention methods. We undertook a systematic review of heat stress interventions, which we classified as either ‘camp-scale’ or ‘individual-scale’. Camp-scale interventions included manual and automated misting of roost vegetation, whereas individual-scale interventions included spraying individual animals or removing them for intensive cooling and rehydration procedures. Our study showed that to date, evaluation of the efficacy of heat stress interventions has been largely anecdotal rather than empirical. This highlights the need for dedicated rigorous studies to evaluate the effectiveness of all the intervention methods described here. It will be especially important to understand the relationship between camp temperature and humidity levels and their influence on flying-foxes’ ability to regulate their body temperature, because high relative humidity reduces the ability of mammals to cool themselves using evaporative heat loss. The development of biophysiological measures such as temperature and humidity indices for different flying-fox species would enable meaningful interpretations of intervention trials under controlled conditions.


2013 ◽  
Vol 17 (8) ◽  
pp. 3077-3094 ◽  
Author(s):  
S. R. Lopez ◽  
T. S. Hogue ◽  
E. D. Stein

Abstract. The current study focuses on the development of a regional framework to evaluate hydrologic and sediment sensitivity, at various stages of urban development, due to predicted future climate variability. We develop archetypal watersheds, which are regional representations of observed physiographic features (i.e., geomorphology, land cover patterns, etc.) with a synthetic basin size and reach network. Each of the three regional archetypes (urban, vegetated and mixed urban/vegetated land covers) simulates satisfactory regional hydrologic and sediment behavior compared to historical observations prior to a climate sensitivity analysis. Climate scenarios considered a range of increasing temperatures, as estimated by the IPCC, and precipitation variability based on historical observations and expectations. Archetypal watersheds are modeled using the Environmental Protection Agency's Hydrologic Simulation Program–Fortran model (EPA HSPF) and relative changes to streamflow and sediment flux are evaluated. Results indicate that the variability and extent of vegetation play a key role in watershed sensitivity to predicted climate change. Temperature increase alone causes a decrease in annual flow and an increase in sediment flux within the vegetated archetypal watershed only, and these effects are partially mitigated by the presence of impervious surfaces within the urban and mixed archetypal watersheds. Depending on the extent of precipitation variability, urban and moderately urban systems can expect the largest alteration in flow regimes where high-flow events increase in frequency and magnitude. As a result, enhanced wash-off of suspended sediments from available pervious surfaces is expected.


2013 ◽  
Vol 27 (6) ◽  
pp. 1201-1211 ◽  
Author(s):  
JEFFREY C. JORGENSEN ◽  
MICHELLE M. MCCLURE ◽  
MINDI B. SHEER ◽  
NANCY L. MUNN

2020 ◽  
Vol 65 (9) ◽  
pp. 1487-1508 ◽  
Author(s):  
David A. Dippold ◽  
Noel R. Aloysius ◽  
Steven Conor Keitzer ◽  
Haw Yen ◽  
Jeffrey G. Arnold ◽  
...  

Author(s):  
Alain Deloire ◽  
Suzy Rogiers ◽  
Katja Šuklje ◽  
Guillaume Antalick ◽  
Xiao Zeyu ◽  
...  

Late ripening berry dehydration is an important phenomenon that occurs through grape berry water loss due to the alteration of the fruit water budget when transpiration and potential water back flow to the plant exceed the import of water into the berry through the phloem and xylem. Berry shrivelling can have a significant economic impact, reducing yields by ≥25 % with consequences on berry composition and the resulting wine. Its occurrence and consequences are expected to increase due to predicted climate change, shifting grape development and ripening into warmer periods (i.e., heat waves and drought events).


2011 ◽  
Vol 2011 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Ola Haug ◽  
Xeni K. Dimakos ◽  
Jofrid F. Vårdal ◽  
Magne Aldrin ◽  
Elisabeth Meze-Hausken
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document