Multivariate statistical analysis of potentially toxic elements in soils under different land uses: Spatial relationship, ecological risk assessment, and source identification

Author(s):  
Yuejun He ◽  
Xiaoxiao Han ◽  
Jingsong Ge ◽  
Lingqing Wang
2021 ◽  
Vol 13 (3) ◽  
pp. 1214
Author(s):  
He Huang ◽  
Yong Zhou ◽  
Yu-Jie Liu ◽  
Liang Xiao ◽  
Ke Li ◽  
...  

Soil is both an important sink and a source for contaminants in the agricultural ecosystem. To research the sources and ecological risk of potentially toxic elements in Xiangzhou, China, 326 soil samples from arable land were collected and analyzed for five potentially toxic elements: cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), and chromium (Cr). In this research, ecological risk assessment was used to determine the degree of contamination in the research area, the outcome of the Geographic Information System was as used to study the spatial distribution characteristics of potentially toxic elements, and random forest was used to evaluate the natural and artificial influencing factors. We surveyed the sources of potentially toxic elements through quantifying the indicators, which gave further opinions. The results were as follows: (1) The average contents of potentially toxic elements were 0.14 mg/kg (Cd), 0.05 mg/kg (Hg), 12.33 mg/kg (As), 28.39 mg/kg (Pb), and 75.21 mg/kg (Cr), respectively. The results compared with the background value of Hubei, neighboring regions, and countries for Cd, As, Pb, and Cr showed mild pollution. (2) The total evaluation of soil pollution via the comprehensive pollution index indicated slight contamination by Cd. Assessment by the potential ecological risk index indicated low ecological risk due to Cd and moderate contamination by Hg. Evaluation through the geo-accumulation index evinced the low ecological risk for Cd, As, and Pb and moderate contamination by Hg. (3) We found that in addition to natural factors (such as soil parent material, soil pH, etc.), long-term industrial pollution, mineral mining and processing, exhaust emissions from transportation, the application of manure from farms as farmyard manure, and sewage irrigation were the primary anthropogenic sources of potentially toxic element contamination in the soil.


Sign in / Sign up

Export Citation Format

Share Document