scholarly journals Mendelian randomisation for mediation analysis: current methods and challenges for implementation

Author(s):  
Alice R. Carter ◽  
Eleanor Sanderson ◽  
Gemma Hammerton ◽  
Rebecca C. Richmond ◽  
George Davey Smith ◽  
...  

AbstractMediation analysis seeks to explain the pathway(s) through which an exposure affects an outcome. Traditional, non-instrumental variable methods for mediation analysis experience a number of methodological difficulties, including bias due to confounding between an exposure, mediator and outcome and measurement error. Mendelian randomisation (MR) can be used to improve causal inference for mediation analysis. We describe two approaches that can be used for estimating mediation analysis with MR: multivariable MR (MVMR) and two-step MR. We outline the approaches and provide code to demonstrate how they can be used in mediation analysis. We review issues that can affect analyses, including confounding, measurement error, weak instrument bias, interactions between exposures and mediators and analysis of multiple mediators. Description of the methods is supplemented by simulated and real data examples. Although MR relies on large sample sizes and strong assumptions, such as having strong instruments and no horizontally pleiotropic pathways, our simulations demonstrate that these methods are unaffected by confounders of the exposure or mediator and the outcome and non-differential measurement error of the exposure or mediator. Both MVMR and two-step MR can be implemented in both individual-level MR and summary data MR. MR mediation methods require different assumptions to be made, compared with non-instrumental variable mediation methods. Where these assumptions are more plausible, MR can be used to improve causal inference in mediation analysis.

2019 ◽  
Author(s):  
Alice R Carter ◽  
Eleanor Sanderson ◽  
Gemma Hammerton ◽  
Rebecca C Richmond ◽  
George Davey Smith ◽  
...  

AbstractMediation analysis seeks to explain the pathway(s) through which an exposure affects an outcome. Mediation analysis experiences a number of methodological difficulties, including bias due to confounding and measurement error. Mendelian randomisation (MR) can be used to improve causal inference for mediation analysis. We describe two approaches that can be used for estimating mediation analysis with MR: multivariable Mendelian randomisation (MVMR) and two-step Mendelian randomisation. We outline the approaches and provide code to demonstrate how they can be used in mediation analysis. We review issues that can affect analyses, including confounding, measurement error, weak instrument bias, and analysis of multiple mediators. Description of the methods is supplemented by simulated and real data examples. Although Mendelian randomisation relies on large sample sizes and strong assumptions, such as having strong instruments and no horizontally pleiotropic pathways, our examples demonstrate that it is unlikely to be affected by confounders of the exposure or mediator and the outcome, reverse causality and non-differential measurement error of the exposure or mediator. Both MVMR and two-step MR can be implemented in both individual-level MR and summary data MR, and can improve causal inference in mediation analysis.


2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Alice Carter ◽  
Eleanor Sanderson ◽  
Gemma Hammerton ◽  
Rebecca Richmond ◽  
George Davey Smith ◽  
...  

Abstract Background Mendelian randomisation uses genetic variants randomly allocated at conception as instrumental variables for an exposure. Methodological advances allow for mediation analysis to be carried out using Mendelian randomisation using either multivariable Mendelian randomisation or two-step Mendelian randomisation. Methods We use simulations and an applied example to demonstrate when multivariable Mendelian randomisation and two-step Mendelian randomisation methods are valid and how they relate to traditional phenotypic regression-based approaches to mediation. We demonstrate how Mendelian randomisation methods can relax assumptions required for causal inference in phenotypic mediation, as well as which Mendelian randomisation specific assumptions are required. We illustrate our methods in data from UK Biobank, estimating the role of body mass index mediating the association between education and cardiovascular outcomes. Results Both multivariable Mendelian randomization and two-step Mendelian randomization are unbiased when estimating the total effect, direct effect, indirect effect and proportion mediated when both confounding, and measurement error are present. Multivariable Mendelian Randomization can be used when multiple mediators are to be investigated in a single model. Conclusions Mendelian randomisation provides an opportunity to improve causal inference in mediation analysis. Although Mendelian randomisation specific assumptions apply, such as no weak instrument bias and no pleiotropic pathways, strong phenotypic assumptions of no confounding and no measurement error can be relaxed. Key messages Mendelian randomisation offers an opportunity to address bias by unmeasured confounding, measurement error and reverse causality in mediation analysis.


2021 ◽  
Author(s):  
Jonathan Sulc ◽  
Jenny Sjaarda ◽  
Zoltan Kutalik

Causal inference is a critical step in improving our understanding of biological processes and Mendelian randomisation (MR) has emerged as one of the foremost methods to efficiently interrogate diverse hypotheses using large-scale, observational data from biobanks. Although many extensions have been developed to address the three core assumptions of MR-based causal inference (relevance, exclusion restriction, and exchangeability), most approaches implicitly assume that any putative causal effect is linear. Here we propose PolyMR, an MR-based method which provides a polynomial approximation of an (arbitrary) causal function between an exposure and an outcome. We show that this method provides accurate inference of the shape and magnitude of causal functions with greater accuracy than existing methods. We applied this method to data from the UK Biobank, testing for effects between anthropometric traits and continuous health-related phenotypes and found most of these (84%) to have causal effects which deviate significantly from linear. These deviations ranged from slight attenuation at the extremes of the exposure distribution, to large changes in the magnitude of the effect across the range of the exposure (e.g. a 1 kg/m2 change in BMI having stronger effects on glucose levels if the initial BMI was higher), to non-monotonic causal relationships (e.g. the effects of BMI on cholesterol forming an inverted U shape). Finally, we show that the linearity assumption of the causal effect may lead to the misinterpretation of health risks at the individual level or heterogeneous effect estimates when using cohorts with differing average exposure levels.


2021 ◽  
Author(s):  
Yiliang Zhang ◽  
Youshu Cheng ◽  
Yixuan Ye ◽  
Wei Jiang ◽  
Qiongshi Lu ◽  
...  

AbstractWith the increasing accessibility of individual-level data from genome wide association studies, it is now common for researchers to have individual-level data of some traits in one specific population. For some traits, we can only access public released summary-level data due to privacy and safety concerns. The current methods to estimate genetic correlation can only be applied when the input data type of the two traits of interest is either both individual-level or both summary-level. When researchers have access to individual-level data for one trait and summary-level data for the other, they have to transform the individual-level data to summary-level data first and then apply summary data-based methods to estimate the genetic correlation. This procedure is computationally and statistically inefficient and introduces information loss. We introduce GENJI (Genetic correlation EstimatioN Jointly using Individual-level and summary data), a method that can estimate within-population or transethnic genetic correlation based on individual-level data for one trait and summary-level data for another trait. Through extensive simulations and analyses of real data on within-population and transethnic genetic correlation estimation, we show that GENJI produces more reliable and efficient estimation than summary data-based methods. Besides, when individual-level data are available for both traits, GENJI can achieve comparable performance than individual-level data-based methods. Downstream applications of genetic correlation can benefit from more accurate estimates. In particular, we show that more accurate genetic correlation estimation facilitates the predictability of cross-population polygenic risk scores.


Biometrika ◽  
2019 ◽  
Vol 107 (1) ◽  
pp. 238-245
Author(s):  
Zhichao Jiang ◽  
Peng Ding

Summary Instrumental variable methods can identify causal effects even when the treatment and outcome are confounded. We study the problem of imperfect measurements of the binary instrumental variable, treatment and outcome. We first consider nondifferential measurement errors, that is, the mismeasured variable does not depend on other variables given its true value. We show that the measurement error of the instrumental variable does not bias the estimate, that the measurement error of the treatment biases the estimate away from zero, and that the measurement error of the outcome biases the estimate toward zero. Moreover, we derive sharp bounds on the causal effects without additional assumptions. These bounds are informative because they exclude zero. We then consider differential measurement errors, and focus on sensitivity analyses in those settings.


Sign in / Sign up

Export Citation Format

Share Document