Pectobacterium carotovorum subsp. carotovorum can cause potato blackleg in temperate climates

2008 ◽  
Vol 122 (4) ◽  
pp. 561-569 ◽  
Author(s):  
Eisse G. de Haan ◽  
Toos C. E. M. Dekker-Nooren ◽  
Gé W. van den Bovenkamp ◽  
Arjen G. C. L. Speksnijder ◽  
Patricia S. van der Zouwen ◽  
...  
Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 241-241 ◽  
Author(s):  
T. Fujimoto ◽  
S. Yasuoka ◽  
Y. Aono ◽  
T. Nakayama ◽  
T. Ohki ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 551 ◽  
Author(s):  
P. de Werra ◽  
F. Bussereau ◽  
A. Keiser ◽  
D. Ziegler

2020 ◽  
Vol 102 (3) ◽  
pp. 871-879
Author(s):  
Wen Li-ping ◽  
Zhong Min ◽  
Ren Min-hua ◽  
Li Xing-wei ◽  
Liu Qiong-guang

Plant Disease ◽  
2021 ◽  
Author(s):  
Sanja Marković ◽  
Sonja Milić Komić ◽  
Aleksandra Jelušić ◽  
Renata Iličić ◽  
Ferenc Bagi ◽  
...  

Potato blackleg is frequently observed on the production fields in the Bačka region of Vojvodina province, which is one of the largest potato-growing areas in Serbia. This disease usually occurs during June and July. In July 2020, blackleg symptoms in the form of stem necrotic lesions, vascular discoloration, hollow stems, and wilting of whole plants were noted on potato cultivar VR808 on a field 28 ha in size located in Maglić village (GPS coordinates 45.349325 N, 19.542768 E). Disease incidence was estimated at 20−25%. Isolations were performed from 12 potato samples on Crystal Violet Pectate medium (CVP). Stem sections consisted of brown lesions and healthy tissue (c.10 cm) were surface sterilized with ethyl alcohol 70% (w/v) and rinsed with sterile distilled water. Small pieces of tissue were taken at the edges of stem lesions (between healthy and diseased tissue) were soaked in phosphate buffer saline for 20 min and plated using a standard procedure (Klement et al. 1990). Single colonies that formed pits after 48 hours at 26 °C were re-streaked onto Nutrient Agar (NA) where creamy white colonies with smooth surfaces were formed. A total of 30 isolates were selected and DNA isolated from the colonies was further analyzed by polymerase chain reaction (PCR) using the partial dnaX gene (DNA polymerase subunit III gamma/tau) with primer pair dnaXf/dnaXr for Pectobacterium and Dickeya species identification (Slawiak et al. 2009). A single characteristic band of 535 bp was amplified in all isolates (Slawiak et al. 2009). DNA sequence alignment showed two distinct groups of isolates (Fig.S1), which were genetically uniform within each group. Using BLASTn search, it was established that the dnaX sequence of the first group (consisting of 19 Serbian potato isolates) had 99.79% identity with NCBI-deposited Pectobacterium versatile strains 14A and 3-2 from potato from Belarus (Acc. No. CP034276 and CP024842, respectively) as well as SCC1 from Finland (Acc. No. CP021894). The remaining 11 dnaX sequences had 100% identity with Pectobacterium carotovorum subsp. carotovorum strain CFBP7081 originating from water in Spain (Acc. No. MK516961). The partial dnaX sequences of three Serbian P. versatile isolates (Pv1320, Pv1520, and Pv1620) and one P. carotovorum subsp. carotovorum (Pcc2520) were deposited in GenBank under Acc. No. MW839571, MW805306, MW839572, and MW805307, respectively. These results, indicating combined infection in the observed field, signify the first identification of P. versatile in Serbia. Multilocus sequence analysis (MLSA) performed with proA (proAF1/ proAR1) and mdh (mdh2/mdh4) genes (Ma et al. 2007; Moleleki et al. 2013) grouped three tested Serbian potato P. versatile isolates together with P. versatile strains from NCBI (Fig.S2). For both tested genes, BLASTn search revealed 100% homology with P. versatile strain SCC1 from Finland. Three Serbian P. versatile potato isolates were deposited under Acc. Nos. MZ682623-25 for proA and MZ682620-22 for mdh genes. According to the routine tests suggested for Pectobacteriaceae (Schaad et al. 2001), Serbian isolates possessed microbiological traits identical to P. versatile description (Portier et al. 2019). Pathogenicity was performed on potato cultivar VR808 with three selected P. versatile isolates (Pv1320, Pv1520, and Pv1620) in the following assays: (i) surface-sterilized tuber slices with holes in the center filled with 100 µL of bacterial suspensions (adjusted to 109 CFU mL-1) to test the isolates’ ability to cause soft rot, and (ii) young, four-week old plants with developed 3rd true leaf (c. 30 cm tall) were inoculated by injecting stems with bacterial suspension adjusted to 107 - 108 CFU mL-1 at a height 5 cm above the soil line. Negative controls were treated with sterile distilled water. Inoculated plants were kept under controlled conditions (25 °C temperature and >70% relative humidity). Each assay was replicated twice. Soft rot appeared on tuber slices 24 h after inoculation. On inoculated stems, initial symptoms manifested as greasy elongated spots at inoculation sites two days after inoculation (DAI), and subsequently extended along the vascular tissue and became necrotic. Whole plant's decay was recorded in five DAI, while negative controls remained healthy. To complete Koch's postulates, bacteria were re-isolated from symptomatic potato plants and confirmed by PCR and sequencing of dnaX. This first report of P. versatile in potato indicates that blackleg currently present in Serbia is caused by a diverse bacterial population. This pathogen was first identified in genome comparison as ‘Candidatus Pectobacterium maceratum’ (Shirshikov et al. 2018) and was later renamed as Pectobacterium versatile sp. nov. (Portier et al. 2019). Thus far, bacterium Pectobacterium carotovorum subsp. brasiliensis has been recognized as dominant pathogen on most of the infected fields in Vojvodina province, and was recently noted on one plot subjected to a combined infection with Dickeya dianthicola (Marković et al. 2021). Findings achieved in this study are highly relevant, as they point to the diversity in potato blackleg pathogens, likely due to the increasingly widespread distribution of imported seed potatoes.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2667-2667 ◽  
Author(s):  
N. Zlatković ◽  
A. Prokić ◽  
K. Gašić ◽  
N. Kuzmanović ◽  
M. Ivanović ◽  
...  

2017 ◽  
Vol 107 (11) ◽  
pp. 1322-1330 ◽  
Author(s):  
Huan Jiang ◽  
Mengyi Jiang ◽  
Liuke Yang ◽  
Peiyan Yao ◽  
Lin Ma ◽  
...  

Pectobacterium carotovorum subsp. carotovorum strain PccS1, a bacterial pathogen causing soft rot disease of Zantedeschia elliotiana (colored calla), was investigated for virulence genes induced by the host plant. Using a promoter-trap transposon (mariner), we obtained 500 transposon mutants showing kanamycin resistance dependent on extract of Z. elliotiana. One of these mutants, PM86, exhibited attenuated virulence on both Z. elliotiana and Brassica rapa subsp. pekinensis. The growth of PM86 was also reduced in minimal medium (MM), and the reduction was restored by adding plant extract to the MM. The gene containing the insertion site was identified as rplY. The deletion mutant ΔrplY, exhibited reduced virulence, motility and plant cell wall-degrading enzyme production but not biofilm formation. Analysis of gene expression and reporter fusions revealed that the rplY gene in PccS1 is up-regulated at both the transcriptional and the translational levels in the presence of plant extract. Our results suggest that rplY is induced by Z. elliotiana extract and is crucial for virulence in P. carotovorum subsp. carotovorum.


2009 ◽  
Vol 44 (3) ◽  
pp. 327-330 ◽  
Author(s):  
Victor Rafael Barra ◽  
Reginaldo da Silva Romeiro ◽  
Flávio Augusto de Oliveira Garcia ◽  
Andréa Bittencourt Moura ◽  
Harllen Sandro Alves Silva ◽  
...  

O objetivo deste trabalho foi avaliar procariotas quanto ao potencial de antagonismo direto para o biocontrole da podridão-mole-do-tomateiro (Pectobacterium carotovorum subsp. carotovorum). Avaliaram-se 45 isolados bacterianos pelo teste de antibiose contra o patógeno. Foram feitos dois ensaios em que sementes de tomate (Lycopersicon esculentum Mill.) cv. Santa Clara foram infectadas com isolados antagônicos. As mudas foram transplantadas para solos infestados com suspensões de propágulos P. carotovorum com OD540 de 0,45 e 0,65. Os antagonistas UFV-0005, UFV-043, UFV-BF112 e UFV-0006 foram eficientes em proteger plantas de tomateiro contra a podridão-mole.


Sign in / Sign up

Export Citation Format

Share Document