Pectobacterium chrysanthemi as the dominant causal agent of bacterial soft rot in Oncidium “Grower Ramsey”

2015 ◽  
Vol 142 (2) ◽  
pp. 331-343 ◽  
Author(s):  
Yi-Hsien Lin ◽  
Pei-Ju Lee ◽  
Wan-Ting Shie ◽  
Lih-Ling Chern ◽  
Yung-Chun Chao
Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 629-632 ◽  
Author(s):  
Craig S. Charron ◽  
Carl E. Sams ◽  
Craig H. Canaday

Glucosinolate degradation products are known to suppress microbes. Brassica species produce glucosinolates. Previous investigations determined that susceptibility to bacterial soft rot of broccoli (Brassica oleracea (Italica group)) varied significantly by cultivar. To evaluate the impact of glucosinolates on Pseudomonas marginalis, a causal agent of bacterial soft rot, glucosinolates were measured in lyophilized florets from broccoli ‘Arcadia’, ‘Emperor’, ‘Green Comet’, ‘Green Valiant’, ‘Marathon’, ‘Packman’, ‘Premium Crop’, and ‘Shogun’. Total glucosinolate content was highest in ‘Shogun’ (29.8 μmol/g) and lowest in ‘Emperor’ (0.5 μmol/g). In an in vitro assay, simple linear regression analysis showed that 48% of differences in suppression of P. marginalis growth could be explained by differences in total glucosinolate content (P ≤ 0.01). Plant breeding efforts should include glucosinolate levels as a factor in selecting for disease resistance.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
M’hamed BENADA ◽  
Boualem BOUMAAZA ◽  
Sofiane BOUDALIA ◽  
Omar KHALADI

Abstract Background The development of ecofriendly tools against plant diseases is an important issue in crop protection. Screening and selection process of bacterial strains antagonists of 2 pathogenic bacterial species that limit very important crops, Erwinia amylovora, the causal agent of the fire blight disease, and Pectobacterium carotovorum, the causal agent of bacterial potato soft rot, were reported. Bacterial colonies were isolated from different ecological niches, where both pathogens were found: rhizosphere of potato tubers and fruits and leaves of pear trees from the northwest region of Algeria. Direct and indirect confrontation tests against strains of E. amylovora and P. carotovorum were performed. Results Results showed a significant antagonistic activity against both phytopathogenic species, using direct confrontation method and supernatants of cultures (p<0.005). In vitro assays showed growth inhibitions of both phytopathogenic species. Furthermore, results revealed that the strains of S. plymuthica had a better inhibitory effect than the strains of P. fluorescens against both pathogens. In vivo results on immature pear fruits showed a significant decrease in the progression of the fire blight symptoms, with a variation in the infection index from one antagonistic strain to another between 31.3 and 50%, and slice of potato showed total inhibition of the pathogen (P. carotovorum) by the antagonistic strains of Serratia plymuthica (p<0.005). Conclusion This study highlighted that the effective bacteria did not show any infection signs towards plant tissue, and considered as a potential strategy to limit the fire blight and soft rot diseases.


Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 437-437
Author(s):  
A. H. Zhang ◽  
X. X. Zhang ◽  
F. J. Lei ◽  
L. X. Zhang

2021 ◽  
Vol 10 (37) ◽  
Author(s):  
Yung-An Lee ◽  
Kuan-Pei Chen

Erwinia chrysanthemi S3-1 is a bacterial soft rot pathogen of the white-flowered calla lily. The complete genome sequence of the strain was determined and used to reclassify the strain as Dickeya dadantii subsp. dieffenbachiae . The sequence will be useful to study plant host-driven speciation in strains of D. dadantii .


Sign in / Sign up

Export Citation Format

Share Document